题目内容
已知f(x)=
,且满足:a1=1,an+1=f(an).
(1)求证:
(2){bn}的前n项和Sn=2n-1,若Tn=
+
+…
,求Tn.
x |
3x+1 |
(1)求证:
|
(2){bn}的前n项和Sn=2n-1,若Tn=
b1 |
a1 |
b2 |
a2 |
bn |
an |
分析:(1)根据an+1=f(an),整理得
-
=3,进而可推断数列{
}成等差数列;
(2)根据等差数列的通项公式求得数列{an}的通项公式,然后利用bn=
,从而求出
,根据通项的特点可利用错位相消法进行求和即可.
1 |
an+1 |
1 |
an |
|
(2)根据等差数列的通项公式求得数列{an}的通项公式,然后利用bn=
|
bn |
an |
解答:解:(1)∵f(x)=
,a1=1,an+1=f(an),
∴an+1=f(an)=
,
则
-
=3,
∴{
}是首项为1,公差为3的等差数列;
(2)由(1)得,
=3n-2,
∵{bn}的前n项和为Sn=2n-1,
∴当n≥2时,bn=Sn-Sn-1=2n-2n-1=2n-1,
而b1=S1=1,也满足上式,则bn=2n-1,
∴
=
=(3n-2)2n-1,
∴Tn=
+
+…
=20+4•21+7•22+…+(3n-2)2n-1,①
则2Tn=21+4•22+7•23+…+(3n-2)2n,②
①-②得:-Tn=1+3•21+3•22+3•23+…+3•2n-1-(3n-2)2n,
∴Tn=(3n-5)2n+5.
x |
3x+1 |
∴an+1=f(an)=
an |
3an+1 |
则
1 |
an+1 |
1 |
an |
∴{
|
(2)由(1)得,
|
∵{bn}的前n项和为Sn=2n-1,
∴当n≥2时,bn=Sn-Sn-1=2n-2n-1=2n-1,
而b1=S1=1,也满足上式,则bn=2n-1,
∴
bn |
an |
2n-1 | ||
|
∴Tn=
b1 |
a1 |
b2 |
a2 |
bn |
an |
则2Tn=21+4•22+7•23+…+(3n-2)2n,②
①-②得:-Tn=1+3•21+3•22+3•23+…+3•2n-1-(3n-2)2n,
∴Tn=(3n-5)2n+5.
点评:本题主要考查了数列的递推式,以及通项为等差数列与等比数列相乘的数列用错位相消法进行求和,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关题目