ÌâÄ¿ÄÚÈÝ
¼×¡¢ÒÒ¡¢±ûÈýÈËÂÖÁ÷ͶÖÀһöÖʵؾùÔȵÄÕý·½Ìå÷»×Ó£¬¹æÔòÈçÏ£ºÈç¹ûijÈËijһ´ÎÖÀ³ö1µã£¬ÔòÏÂÒ»´Î¼ÌÐøÓÉ´ËÈËÖÀ£¬Èç¹ûÖÀ³öÆäËûµãÊý£¬ÔòÁíÍâÁ½¸öÈË×¥ãξö¶¨ÓÉËÀ´Í¶ÖÀ£¬ÇÒµÚÒ»´ÎÓɼ×ͶÖÀ£®ÉèµÚn´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇpn£¬ÓÉÒÒ»ò±ûͶÖÀµÄ¸ÅÂʾùΪqn£®
£¨1£©¼ÆËãp1£¬p2£¬p3µÄÖµ£»
£¨2£©ÇóÊýÁÐ{Pn}µÄͨÏʽ£»
£¨3£©Èç¹ûÒ»´ÎͶÖÀÖУ¬ÓÉÈκÎÁ½¸öÈËͶÖÀµÄ¸ÅÂÊÖ®²îµÄ¾ø¶ÔֵСÓÚ0.001£¬Ôò³Æ´Ë´ÎͶÖÀÊÇ¡°»ú»á½Ó½ü¾ùµÈ¡±£¬ÄÇô´ÓµÚ¼¸´ÎͶÖÀ¿ªÊ¼£¬»ú»á½Ó½ü¾ùµÈ£¿
£¨1£©¼ÆËãp1£¬p2£¬p3µÄÖµ£»
£¨2£©ÇóÊýÁÐ{Pn}µÄͨÏʽ£»
£¨3£©Èç¹ûÒ»´ÎͶÖÀÖУ¬ÓÉÈκÎÁ½¸öÈËͶÖÀµÄ¸ÅÂÊÖ®²îµÄ¾ø¶ÔֵСÓÚ0.001£¬Ôò³Æ´Ë´ÎͶÖÀÊÇ¡°»ú»á½Ó½ü¾ùµÈ¡±£¬ÄÇô´ÓµÚ¼¸´ÎͶÖÀ¿ªÊ¼£¬»ú»á½Ó½ü¾ùµÈ£¿
·ÖÎö£º£¨1£©¸ù¾Ý¹æÔò£¬¿ÉÇóp1£¬p2£¬p3µÄÖµ£»
£¨2£©ÉèµÚn-1´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇpn-1£¨n¡Ý2£©£¬ÔòµÚn-1´ÎÓɼ×ͶÖÀ¶øµÚn´ÎÈÔÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
pn-1£¬µÚn-1´ÎÓÉÁíÁ½ÈËͶÖÀ¶øµÚn´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
¡Á
(1-pn-1)£¬¡£¬Óɴ˿ɵÃͨÏʽ£»
£¨3£©ÓÉqn=
£¬½áºÏ£¨2£©µÄ½áÂÛ£¬ÀûÓÃÈκÎÁ½¸öÈËͶÖÀµÄ¸ÅÂÊÖ®²îµÄ¾ø¶ÔֵСÓÚ0.001£¬½¨Á¢²»µÈʽ£¬¼´¿ÉÇóµÃ½áÂÛ£®
£¨2£©ÉèµÚn-1´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇpn-1£¨n¡Ý2£©£¬ÔòµÚn-1´ÎÓɼ×ͶÖÀ¶øµÚn´ÎÈÔÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
1 |
6 |
1 |
2 |
5 |
6 |
£¨3£©ÓÉqn=
1-pn |
2 |
½â´ð£º½â£º£¨1£©ÓÉÌâÒ⣬p1=1£¬p2=
£¬p3=
+
¡Á
¡Á(1-
)=
¡£¨5·Ö£©
£¨2£©ÉèµÚn-1´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇpn-1£¨n¡Ý2£©£¬Ôò
µÚn-1´ÎÓɼ×ͶÖÀ¶øµÚn´ÎÈÔÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
pn-1£¬
µÚn-1´ÎÓÉÁíÁ½ÈËͶÖÀ¶øµÚn´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
¡Á
(1-pn-1)£¬¡£¨9·Ö£©
ÓÚÊÇpn=
pn-1+
¡Á
(1-pn-1)=-
pn-1+
£¬
µÝÍƵÃpn=
•(-
)n-1+
£® ¡£¨12·Ö£©
£¨3£©ÓÉqn=
£¬µÃ|pn-qn|=
£¼0.001£¬¡àn¡Ý6
¹Ê´ÓµÚ6´Î¿ªÊ¼£¬»ú»á½Ó½ü¾ùµÈ£®¡£¨15·Ö£©
1 |
6 |
1 |
36 |
1 |
2 |
5 |
6 |
1 |
6 |
3 |
8 |
£¨2£©ÉèµÚn-1´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇpn-1£¨n¡Ý2£©£¬Ôò
µÚn-1´ÎÓɼ×ͶÖÀ¶øµÚn´ÎÈÔÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
1 |
6 |
µÚn-1´ÎÓÉÁíÁ½ÈËͶÖÀ¶øµÚn´ÎÓɼ×ͶÖÀµÄ¸ÅÂÊÊÇ
1 |
2 |
5 |
6 |
ÓÚÊÇpn=
1 |
6 |
1 |
2 |
5 |
6 |
1 |
4 |
5 |
12 |
µÝÍƵÃpn=
2 |
3 |
1 |
4 |
1 |
3 |
£¨3£©ÓÉqn=
1-pn |
2 |
1 |
4n-1 |
¹Ê´ÓµÚ6´Î¿ªÊ¼£¬»ú»á½Ó½ü¾ùµÈ£®¡£¨15·Ö£©
µãÆÀ£º±¾Ì⿼²é¸ÅÂÊ֪ʶµÄÔËÓ㬿¼²éÊýÁÐͨÏîµÄÈ·¶¨£¬¿¼²éѧÉú·ÖÎö½â¾öÎÊÌâµÄÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿