题目内容
如图,在四边形
中,
,且
.
(1)求
的值;(2)设
的面积为
,四边形
的面积为
,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240550395022613.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039330528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240550393461152.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039377647.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039393626.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039408533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039440341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039330528.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039471372.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039486466.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240550395022613.png)
(1)
,(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039533481.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039549620.png)
试题分析:(1)由于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039564767.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039580520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039596774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039580520.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039642516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039658625.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039689507.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039705723.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039440341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039471372.png)
试题解析:(1)在Rt△ADC中,AD=8,CD=6,
则AC=10,cos∠CAD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039767346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039783369.png)
又∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039798547.png)
∴cos∠BAC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039596774.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039845400.png)
∵0<∠BAC∠180°,
∴sin∠BAC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039861420.png)
∴sin∠BAD=sin(∠BAC+∠CAD)=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039533481.png)
(2)S1=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039892338.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039908458.png)
S△BAC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039892338.png)
则S2=S△ABC+S△ACD=84,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824055039549620.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目