题目内容

【题目】已知函数fx)=(x12alnxa0.

1)讨论fx)的单调性;

2)若fx)存在两个极值点x1x2x1x2),且关于x的方程fx)=bbR)恰有三个实数根x3x4x5x3x4x5),求证:2x2x1)>x5x3.

【答案】1)答案不唯一,具体见解析(2)证明见解析

【解析】

1)求导得f′(x),令f′(x)0,即2x22xa04+8a,分两种情况①≤0,②0,讨论f(x)单调性;

2)由题意得a0,画出草图,知0x3x1x4x2x50x1x21,要证:2(x2x1)x5x3,即证:2(x2x1)(x5+x4)(x3+x4),只需证:,先证:x3+x42x1.即证x42x1x3,由(1f(x)单调递减,只需证f(x4)f(2x1x3),即证:f(x3)f(2x1x3),令g(x)f(x)f(2x1x)0xx1,求导数,分析单调性,可得g(x)g(x1)0,故f(x)f(2x1x),在(0x1)恒成立,f(x3)f(2x1x3)得证,同理可以证明:x3+x42x2,综上,2(x2x1)x5x3,得证.

1)由题意得2(x1)

0,即2x22xa04+8a

①当a时,≤0≥0,函数f(x)(0+∞)上单调递增,

②当a0时,0

2x22xa0的两根为x1x20x1x2

x(0)(+∞)时,0f(x)单调递增,

x()时,0f(x)单调递减,

综上,当a时,函数f(x)(0+∞)上单调递增,

a0时,fx)在(0)上单调递增,在()上单调递减,在(+∞)上单调递增.

2)证明:由题意得a00x3x1x4x2x50x1x21,如图,

要证:2(x2x1)x5x3

即证:2(x2x1)(x5+x4)(x3+x4)

只需证:

先证:x3+x42x1.

即证x42x1x3

又由(1)知f(x)(x1x2)上单调递减,

只需证f(x4)f(2x1x3)

f(x4)f(x3),即证:f(x3)f(2x1x3)

g(x)f(x)f(2x1x)0xx1

+2x22(2x1x)2

4(x11)

2(x11)0,即x11,那么,

,而0xx1,且

0,故g(x)(0x1)单调递增,则g(x)g(x1)0

f(x)f(2x1x),在(0x1)恒成立,

0x3x1,则f(x3)f(2x1x3)得证,

同理可以证明:x3+x42x2

综上,2(x2x1)x5x3,得证.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网