题目内容
【题目】已知函数f(x)= sin2x﹣2cos2x﹣1,x∈R.
(Ⅰ)求函数f(x)的最小正周期和最小值;
(Ⅱ)在△ABC中,A,B,C的对边分别为a,b,c,已知c= ,f(C)=0,sinB=2sinA,求a,b的值.
【答案】解:(Ⅰ)f(x)= sin2x﹣(cos2x+1)﹣1= sin2x﹣cos2x﹣2=2sin(2x﹣ )﹣2, ∵ω=2,﹣1≤sin(2x﹣ )≤1,
∴f(x)的最小正周期T=π;最小值为﹣4;
(Ⅱ)∵f(C)=2sin(2C﹣ )﹣2=0,
∴sin(2C﹣ )=1,
∵C∈(0,π),∴2C﹣ ∈(﹣ , ),
∴2C﹣ = ,即C= ,
将sinB=2sinA,利用正弦定理化简得:b=2a,
由余弦定理得:c2=a2+b2﹣2abcosC=a2+4a2﹣2a2=3a2 ,
把c= 代入得:a=1,b=2
【解析】(Ⅰ)f(x)解析式利用二倍角的余弦函数公式化简,整理后利用两角和与差的正弦函数公式化为一个角的正弦函数,找出ω的值,代入周期公式求出函数f(x)的最小正周期,利用正弦函数的值域确定出f(x)最小值即可;(Ⅱ)由f(C)=0及第一问化简得到的解析式,求出C的度数,利用正弦定理化简sinB=2sinA,得到b=2a,利用余弦定理列出关系式,把c,b=2a,cosC的值代入即可求出a与b的值.
练习册系列答案
相关题目