题目内容

【题目】已知ABC的角ABC所对的边分别为abc,设向量=(ab),=(sin B,sin A), =(b-2,a-2).

(1),求证:ABC为等腰三角形;

(2),边长c=2,∠C,求ABC的面积.

【答案】(1)见解析.

(2) .

【解析】分析:(1)根据正弦定理和向量平行的条件,问题得以证明;
(2)根据向量垂直则数量积等于0,利用余弦定理,求出ab的积,然后利用三角形的面积公式,即可解得.

详解:

(1)证明 ,∴asin Absin B

a·b· (其中RABC外接圆的半径).

ab,∴△ABC为等腰三角形.

(2) 由·=0,即a(b-2)+b(a-2)=0,

abab.

c=2,∠C,∴4=a2b2-2abcos,即有

4=(ab)2-3ab.

∴(ab)2-3ab-4=0,∴ab=4(ab=-1舍去).

因此SABCabsin C×4× .

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网