题目内容
同时抛掷两枚骰子,将得到的点数分别记为.将的值分别作为三条线段的长,这三条线段能围成等腰三角形的概率 .
已知椭圆的焦距为,左、右顶点分别为、,是椭圆上一点, 记直线、的斜率为、,且有.
(1)求椭圆的方程;
(2)若直线与椭圆交于、两点, 以、为直径的圆经过原点, 且线段的垂直平分线在轴上的截距为,求直线的方程.
(重点班)我们知道对数函数,对任意,都有成立,若,则当时,.参照对数函数的性质,研究下题:定义在上的函数对任意,都有,并且当且仅当时,成立.
(1)设,求证:;
(2)设,若,比较与的大小.
已知水平放置的的平面直观图是边长为1的正三角形,那么的面积为( )
A. B. C. D.
某兴趣小组为调查当地居民的收入水平,他们对当地一个有5000人的社区随机抽取1000人,调查他们的月收入,根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组表示收入在[1000,1500)),因操作人员不慎,未标出第五组顶部对应的纵轴数据.
(Ⅰ)请你补上第五组顶部对应的纵轴数据,并估算该社区居民月收入在[3000,4000)的人数;
(Ⅱ)根据频率分布直方图估算样本数据的中位数;
(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这1000人中用分层抽样方法抽出100人作进一步分析,则月收入在[2500,3000)的这段应抽多少人?
在平面区域内随机取一点P,则点P在圆内部的概率
若,则“”是“”的
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
如图,已知平面平面,与分别是棱长为1与2的正三角形,//,四边形为直角梯形,//,,点为的重心,为中点,.
(Ⅰ)当时,求证://平面;
(Ⅱ)若直线与所成角为,试求二面角的余弦值.
如图1,已知四边形为直角梯形,,,,为等边三角形,,,如图2,将,分别沿折起,使得平面平面,平面平面,连接,设为上任意一点.
(1)证明:平面;
(2)若,求的值.