题目内容
11.设向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(2,3),若向量$\overrightarrow{a}-λ\overrightarrow{b}$与向量$\overrightarrow{c}$=(-5,-6)共线,则λ的值为( )A. | $\frac{4}{3}$ | B. | $\frac{4}{13}$ | C. | $-\frac{4}{9}$ | D. | 4 |
分析 利用向量的坐标运算、向量共线定理即可得出.
解答 解:∵$\overrightarrow{a}-λ\overrightarrow{b}$=(1,2)-λ(2,3)=(1-2λ,2-3λ),与$\overrightarrow{c}$共线,
∴-5(2-3λ)-(-6)(1-2λ)=0,
化为-4+3λ=0,解得$λ=\frac{4}{3}$.
故选:A.
点评 本题考查了向量的坐标运算、向量共线定理,属于基础题.
练习册系列答案
相关题目
1.a为正实数,i是虚数单位,|$\frac{a-i}{i}$|=2,则a=( )
A. | 2 | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 1 |
2.在空间,下列命题中不正确的是( )
A. | 如果两个平面有一个公共点,那么它们还有其他公共点 | |
B. | 若已知四个点不共面,则其中任意三个点也不共面 | |
C. | 若点A既在平面α内又在平面β内,则点A在平面α与平面β的交线上 | |
D. | 若两点A、B既在直线l上又在平面α内,则l在平面α内 |
19.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数 $z=x+\frac{m}{2}y(m>0)$的最大值为2,则$y=sin(mx+\frac{π}{3})$的图象向右平移$\frac{π}{6}$后的表达式为( )
A. | $y=sin(2x+\frac{π}{6})$ | B. | $y=sin(x+\frac{π}{6})$ | C. | y=sin2x | D. | $y=sin(2x+\frac{2π}{3})$ |
6.命题P:“?x∈R,x2+1<2x”的否定¬P为( )
A. | ?x∈R,x2+1>2x | B. | ?x∈R,x2+1≥2x | C. | ?x∈R,x2+1≥2x | D. | ?x∈R,x2+1<2x |
2.定义集合A={x|x=$\frac{m}{3}+\frac{n}{2}$,m,n∈Z},B={y|y=6x,x∈A},则下列说法判断正确的是( )
A. | 若x∈A且x∈(0,1),则x的最大值为$\frac{2}{3}$ | B. | 若集合C为偶数集,则B∪C=C | ||
C. | 若x∈A,则x∈B | D. | 若x∈B,则x∈A |