题目内容

【题目】如图,在四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,CD= ,AB=AC.

(1)证明:AD⊥CE;
(2)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的余弦值.

【答案】
(1)证明:取BC中点F,连接DF交CE于点O,

∵AB=AC,∴AF⊥BC.

又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.

再根据 ,可得∠CED=∠FDC.

又∠CDE=90°,∴∠OED+∠ODE=90°,

∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.


(2)解:在面ACD内过C点作AD的垂线,垂足为G.

∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,

则∠CGE即为所求二面角的平面角.

作CH⊥AB,H为垂足.

∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH平面ABC,

故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,

∴∠CEH=45°为CE与平面ABE所成的角.

∵CE= ,∴CH=EH=

直角三角形CBH中,利用勾股定理求得BH= = =1,∴AH=AB﹣BH=AC﹣1;

直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.

由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,

故△ACD为直角三角形,AD= = =

故CG= = = ,DG= =

,又


【解析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,根据三角形的边角关系进行求即可即可.
【考点精析】认真审题,首先需要了解空间中直线与直线之间的位置关系(相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网