题目内容

已知是实数,函数
(1)若,求的值及曲线在点处的切线方程;
(2)求在区间上的最大值。

(1).(2)

解析试题分析:(I)求出f'(x),利用f'(1)=3得到a的值,然后把a代入f(x)中求出f(1)得到切点,而切线的斜率等于f'(1)=3,写出切线方程即可;
(II)令f'(x)=0求出x的值,利用x的值分三个区间讨论f'(x)的正负得到函数的单调区间,根据函数的增减性得到函数的最大值.
(1)解:
因为,所以
又当时,
所以曲线处的切线方程为
(2)解:令,解得
,即时,上单调递增,从而
,即时,上单调递减,从而
,即时,上单调递减,在上单调递增,从而综上所述,
考点:本题主要考查了导数的基本性质、导数的应用等基础知识,以及综合运用所学知识分析问题和解决问题的能力.
点评:解决该试题的关键是理解导数的几何意义的运用,和导数的符号对于函数单调性的影响:导数大于零得到的区间为增区间,导数小于零得到的区间为减区间。对于参数分类讨论是个难点。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网