ÌâÄ¿ÄÚÈÝ
1£®ÔÚÈýά¿Õ¼äÖ±½Ç×ø±êϵÖУ¬¶ÔÆäÖÐÈκÎÒ»ÏòÁ¿$\overrightarrow{x}$=£¨x1£¬x2£¬x3£©£¬¶¨Òå·¶Êý||x||£¬ËüÂú×ãÒÔÏÂÐÔÖÊ£º¢Ù||x||¡Ý0£¬µ±ÇÒ½öµ±xΪÁãÏòÁ¿Ê±£¬²»µÈʽȡµÈºÅ£»
¢Ú¶ÔÈÎÒâʵÊý¦Ë£¬||¦Ëx||=|¦Ë|•||x||£¨×¢£º´Ë´¦µã³ËºÅΪÆÕͨµÄ³ËºÅ£¬ÎÞµã³ËÒâÒ壩£»
¢Û||x||+||y||¡Ý||x+y||£®
ÊÔÇó½âÒÔÏÂÎÊÌ⣺
ÔÚ¶þάƽÃæÖ±½Ç×ø±êϵÖУ¬ÓÐÏòÁ¿$\overrightarrow{x}$=£¨x1£¬x2£©£¬ÏÂÃæ¸ø³öµÄ¼¸¸ö±í´ïʽÖУ¬¿ÉÄܱíʾÏòÁ¿$\overrightarrow{x}$µÄ·¶ÊýÊǢڢݣ¨°ÑËùÓÐÕýÈ·µÄ´ð°¸µÄÐòºÅ¶¼ÌîÉÏ£©£®
¢Ù$\sqrt{{{x}_{1}}^{2}}$+2x22£»
¢Ú$\sqrt{{{x}_{1}}^{2}+2{{x}_{2}}^{2}}$£»
¢Û$\sqrt{2{{x}_{1}}^{2}-{{x}_{2}}^{2}}$£»
¢Ü$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}+2}$£»
¢Ý$\sqrt{{{x}_{1}}^{2}+{{x}_{2}}^{2}}$£®
·ÖÎö ÀûÓö¨Ò壬¶ÔÑ¡Ïî·Ö±ð½øÐÐÅжϣ¬¼´¿ÉµÃ³ö½áÂÛ£®
½â´ð ½â£ºÓÉ£¨1£©Öªµ±ÇÒ½öµ±XΪÁãÏòÁ¿Ê±£¬|X|=0 Òò´Ë¿ÉÒÔÅųý¢Ü£®
$\sqrt{{{x}_{1}}^{2}}$+2x22Âú×ã||X||¡Ý0£¬µ±ÇÒ½öµ±XΪÁãÏòÁ¿Ê±£¬²»µÈʽȡµÈºÅ£»µ«²»Âú×ã¶ÔÈÎÒâµÄʵÊý¦Ë£¬||¦ËX||=|¦Ë|•||X||£¬¹Ê²»ÕýÈ·£»
$\sqrt{2{{x}_{1}}^{2}-{{x}_{2}}^{2}}$Âú×ã||X||¡Ý0£¬µ±ÇÒ½öµ±XΪÁãÏòÁ¿Ê±£¬²»µÈʽȡµÈºÅ£»µ«²»Âú×ã¶ÔÈÎÒâµÄʵÊý¦Ë£¬||¦ËX||=|¦Ë|•||X||£¬¹Ê²»ÕýÈ·£»
ÏÖÔÚ̽Ë÷Ò»ÏÂÑ¡ÔñÖ§¢ÚÊÇ·ñÂú×ãÐÔÖÊ£¨3£©£¬$\sqrt{{a}^{2}+2{b}^{2}}$+$\sqrt{{m}^{2}+2{n}^{2}}$¡Ý$\sqrt{£¨a+m£©^{2}+2£¨b+n£©^{2}}$?2abmn¡Üa2n2+b2m2ÕâÊÇÏÔÈ»³ÉÁ¢µÄ£¬ËùÒÔÑ¡ÔñÖ§Âú×ãÐÔÖÊ£¨3£©£¬ÓÖÑ¡ÔñÖ§ÏÔÈ»Âú×ãÐÔÖÊ£¨2£©£»ËùÒÔÑ¡ÔñÖ§ÄܱíʾXµÄ·¶Êý
ͬÀí¿ÉÒÔÖªµÀ¢ÝÒ²¿ÉÒÔ±íʾÏòÁ¿XµÄ·¶Êý£®
ËùÒÔ¾¹ýÑéÖ¤ºó¿ÉÒÔÖªµÀÕýÈ·µÄÊǢڢݣ®
¹Ê´ð°¸Îª£º¢Ú¢Ý£®
µãÆÀ ±¾Ì⿼²éÁËж¨ÒåÏòÁ¿µÄ·¶Êý£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
A£® | -$\frac{4}{3}$ | B£® | $\frac{4}{3}$ | C£® | -$\frac{1}{2}$ | D£® | 2 |
A£® | £¨-2£¬4£© | B£® | [-2£¬4£© | C£® | £¨0£¬2£© | D£® | £¨0£¬2] |
A£® | x¡Ý3 | B£® | y¡Ý4 | C£® | x+2y-8¡Ý0 | D£® | 2x-y+1¡Ý0 |
A£® | $\sqrt{2}$ | B£® | 8 | C£® | $2\sqrt{2}$ | D£® | 2 |
A£® | 0»ò3 | B£® | 3»ò9 | C£® | 0»ò9 | D£® | 1»ò9 |