题目内容
【题目】设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2﹣f(﹣x),当x∈(﹣∞,0)时,f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,则实数m的取值范围是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)
【答案】A
【解析】解:∵f(x)=4x2﹣f(﹣x),
∴f(x)﹣2x2+f(﹣x)﹣2x2=0,
设g(x)=f(x)﹣2x2,则g(x)+g(﹣x)=0,
∴函数g(x)为奇函数.
∵x∈(﹣∞,0)时,f′(x)+ <4x,
g′(x)=f′(x)﹣4x<﹣ ,
故函数g(x)在(﹣∞,0)上是减函数,
故函数g(x)在(0,+∞)上也是减函数,
若f(m+1)≤f(﹣m)+4m+2,
则f(m+1)﹣2(m+1)2≤f(﹣m)﹣2m2,
即g(m+1)<g(﹣m),
∴m+1≥﹣m,解得:m≥﹣ ,
所以答案是:A.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).
【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,得到下面的数据表:
休闲方式 | 看电视 | 看书 | 合计 |
男 | 20 | 100 | 120 |
女 | 20 | 20 | 40 |
合计 | 40 | 120 | 160 |
下面临界值表:
P(K2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系”?