题目内容
【题目】如图,在四棱锥中,四边形为梯形,且,,平面平面.
(1)证明:平面平面;
(2)若,,求二面角的正弦值.
【答案】(1)证明见解析;(2).
【解析】
(1)根据面面垂直的性质定理可知,平面,又,可得平面,再根据面面垂直的判定定理即可证出;
(2)作于,过作交于,即可知平面,建立以为坐标原点,,,所在直线分别为轴,轴,轴的空间直角坐标系,分别求出平面和平面的一个法向量,根据向量法即可求出.
(1)证明:∵平面平面,平面平面,,
在平面内,∴平面,又∵,
∴平面,而在平面内,
∴平面平面;
(2)作于,则平面,过作交于,
如图,以为坐标原点,,,所在直线分别为轴,轴,轴,
建立如图所示的空间直角坐标系:
设,则,,,,
故,,,
设平面的一个法向量为,则,
则可取,
设平面的一个法向量为,则,
则可取,
∴,∴.
故二面角的平面角的正弦值为.
【题目】某周末,郑州方特梦幻王国汇聚了八方来客.面对该园区内相邻的两个主题公园“千古蝶恋”和“西游传说”,成年人和未成年人选择游玩的意向会有所不同.某统计机构对园区内的100位游客(这些游客只在两个主题公园中二选一)进行了问卷调查.调查结果显示,在被调查的50位成年人中,只有10人选择“西游传说”,而选择“西游传说”的未成年人有20人.
(1)根据题意,请将下面的列联表填写完整;
选择“西游传说” | 选择“千古蝶恋” | 总计 | |
成年人 | |||
未成年人 | |||
总计 |
(2)根据列联表的数据,判断是否有的把握认为选择哪个主题公园与年龄有关.
附参考公式与表:().
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【题目】某校共有学生2000人,其中男生900人,女生1100人,为了调查该校学生每周平均体育锻炼时间,采用分层抽样的方法收集该校100名学生每周平均体育锻炼时间(单位:小时).
(1)应抽查男生与女生各多少人?
(2)根据收集100人的样本数据,得到学生每周平均体育锻炼时间的频率分布表:
时间(小时) | [0,1] | (1,2] | (2,3] | (3,4] | (4,5] | (5,6] |
频率 | 0.05 | 0.20 | 0.30 | 0.25 | 0.15 | 0.05 |
若在样本数据中有38名男学生平均每周课外体育锻炼时间超过2小时,请完成每周平均体育锻炼时间与性别的列联表,并判断是否有95%的把握认为“该校学生的每周平均体育锻炼时间与性别有关”?
男生 | 女生 | 总计 | |
每周平均体育锻炼时间不超过2小时 | |||
每周平均体育锻炼时间超过2小时 | |||
总计 |
附:K2.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.005 |
2.706 | 3.841 | 6.635 | 7.879 |
【题目】2018年3月份,上海出台了《关于建立完善本市生活垃圾全程分类体系的实施方案》,4月份又出台了《上海市生活垃圾全程分类体系建设行动计划(2018-2020年)》,提出到2020年底,基本实现单位生活垃圾强制分类全覆盖,居民区普遍推行生活垃圾分类制度.为加强社区居民的垃圾分类意识,推动社区垃圾分类正确投放,某社区在健身广场举办了“垃圾分类,从我做起”生活垃圾分类大型宣传活动,号召社区居民用实际行动为建设绿色家园贡献一份力量,为此需要征集一部分垃圾分类志愿者.
(1)为调查社区居民喜欢担任垃圾分类志愿者是否与性别有关,现随机选取了一部分社区居民进行调查,其中被调查的男性居民和女性居民人数相同,男性居民中不喜欢担任垃圾分类志愿者占男性居民的,女性居民中不喜欢担任垃圾分类志愿者占女性居民的,若研究得到在犯错误概率不超过0.010的前提下,认为居民喜欢担任垃圾分类志愿者与性别有关,则被调查的女性居民至少多少人?
附,,
0.100 | 0.050 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
(2)某垃圾站的日垃圾分拣量(千克)与垃圾分类志愿者人数(人)满足回归直线方程,数据统计如下:
志愿者人数(人) | 2 | 3 | 4 | 5 | 6 |
日垃圾分拣量(千克) | 25 | 30 | 40 | 45 |
已知,,,根据所给数据求和回归直线方程,附:,.
(3)用(2)中所求的线性回归方程得到与对应的日垃圾分拣量的估计值.当分拣数据与估计值满足时,则将分拣数据称为一个“正常数据”.现从5个分拣数据中任取3个,记表示取得“正常数据”的个数,求的分布列和数学期望.