题目内容
【题目】如图,下面的表格内的数值填写规则如下:先将第1行的所有空格填上1;再把一个首项为1,公比为的数列依次填入第一列的空格内;其它空格按照“任意一格的数是它上面一格的数与它左边一格的数之和”的规则填写
第1列 | 第2列 | 第3列 | … | 第列 | |
第1行 | 1 | 1 | 1 | … | 1 |
第2行 | |||||
第3行 | |||||
… | … | ||||
第行 |
(1)设第2行的数依次为,试用表示的值;
(2)设第3列的数依次为,求证:对于任意非零实数,;
(3)能否找到的值,使得(2)中的数列的前项成为等比数列?若能找到,的值有多少个?若不能找到,说明理由.
【答案】(1); (2)证明见解析(3)当且仅当且时,数列是等比数列
【解析】
(1)依题意可求得,,,从而可求得的值;(2)求出,通过作差法比较的大小;(3)先设成等比数列,可求得q,求出,从而证明是一个公比为的等比数列.
(1) ,,,
所以;
(2) ,
由,
得;
(3)先设成等比数列,由,
得,解得,
此时,,所以是一个公比为的等比数列.
【题目】某公司为了解广告投入对销售收益的影响,在若干地区各投入4万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员失误,横轴的数据丢失,但可以确定横轴是从0开始计数的.
(1)根据频率分布直方图计算图中各小长方形的宽度;
(2)估计该公司投入4万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值);
(3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表:
广告投入x(单位:万元) | 1 | 2 | 3 | 4 | 5 |
销售收益y(单位:万元) | 1 | 3 | 4 | 7 |
表中的数据显示,x与y之间存在线性相关关系,请将(2)的结果填入上表的空白栏,并计算y关于x的回归方程.
回归直线的斜率和截距的最小二乘法估计公式分别为,.
【题目】某校针对校食堂饭菜质量开展问卷调查,提供满意与不满意两种回答,调查结果如下表(单位:人):
学生 | 高一 | 高二 | 高三 |
满意 | 500 | 600 | 900 |
不满意 | 300 | 200 | 300 |
(1)求从所有参与调查的人中任选1人是高三学生的概率;
(2)从参与调查的高三学生中,用分层抽样的方法抽取4人,在这4人中任意选取2人,求这两人对校食堂饭菜质量都满意的概率.
【题目】某公司需要对所生产的三种产品进行检测,三种产品数量(单位:件)如下表所示:
产品 | A | B | C |
数量(件) | 180 | 270 | 90 |
采用分层抽样的方法从以上产品中共抽取6件.
(1)求分别抽取三种产品的件数;
(2)将抽取的6件产品按种类编号,分别记为,现从这6件产品中随机抽取2件.
(ⅰ)用所给编号列出所有可能的结果;
(ⅱ)求这两件产品来自不同种类的概率.
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若=10,求y与x的函数解析式;
(2)若要求“维修次数不大于”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?