题目内容

【题目】已知函数f(x)=(ax2+x﹣1)ex , 其中e是自然对数的底数,a∈R.
(Ⅰ)若a=1.求曲线f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若a=﹣1,函数f(x)的图象与函数g(x)=x3+x2+m的图象有3个不同的交点,求实数m的取值范围.

【答案】解:(Ⅰ)∵f(x)=(x2+x﹣1)ex
∴f′(x)=(2x+1)ex+(x2+x﹣1)ex=(x2+3x)ex
∴曲线f(x)在点(1,f(1))处的切线斜率k=f′(1)=4e,
∵f(1)=e,
∴曲线f(x)在点(1,f(1))处的切线方程为y﹣e=4e(x﹣1),
即4ex﹣y﹣3e=0.
(Ⅱ)令h(x)=f(x)﹣g(x)=(﹣x2+x﹣1)ex﹣(x3+x2+m)
则h′(x)=(﹣2x+1)ex+(﹣x2+x﹣1)ex﹣(x2+x)
=﹣(ex+1)(x2+x)
令h′(x)>0得﹣1<x<0,令h′(x)<0得x>0或x<﹣1.
∴h(x)在x=﹣1处取得极小值h(﹣1)=﹣﹣m,在x=0处取得极大值h(0)=﹣1﹣m,
∵函数f(x),g(x)的图象有三个交点,即函数h(x)有3个不同的零点,

解得:﹣<m<﹣1.
【解析】(Ⅰ)求出导数,求出切线的斜率,切点,运用点斜式方程,即可得到;
(Ⅱ)令h(x)=f(x)﹣g(x),求出导数,求出单调区间,和极值,函数f(x),g(x)的图象有三个交点,即函数h(x)有3个不同的零点,即有h(﹣1)<0,且h(0)>0,解出即可.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网