ÌâÄ¿ÄÚÈÝ
ijµçÊǪ́ÓÐA¡¢BÁ½ÖÖÖÇÁ¦´³¹ØÓÎÏ·£¬¼×¡¢ÒÒ¡¢±û¡¢¶¡ËÄÈ˲μӣ¬ÆäÖм×ÒÒÁ½È˸÷×Ô¶ÀÁ¢½øÐÐÓÎÏ·A£¬±û¶¡Á½È˸÷×Ô¶ÀÁ¢½øÐÐÓÎÏ·B.ÒÑÖª¼×¡¢ÒÒÁ½È˸÷×Ô´³¹Ø³É¹¦µÄ¸ÅÂʾùΪ£¬±û¡¢¶¡Á½È˸÷×Ô´³¹Ø³É¹¦µÄ¸ÅÂʾùΪ.
(I )ÇóÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹Ø³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£»
(II) ¼ÇÓÎÏ·A¡¢B±»´³¹Ø³É¹¦µÄ×ÜÈËÊýΪ£¬ÇóµÄ·Ö²¼ÁкÍÆÚÍû.
(I )ÇóÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹Ø³É¹¦µÄÈËÊýµÄ¸ÅÂÊ£»
(II) ¼ÇÓÎÏ·A¡¢B±»´³¹Ø³É¹¦µÄ×ÜÈËÊýΪ£¬ÇóµÄ·Ö²¼ÁкÍÆÚÍû.
£¨1£©£¨2£©E=
(I )·ÖÇé¿öÁÐÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹Ø³É¹¦µÄÈËÊý°üº¬µÄʼþ£»(II)È·¶¨µÄÈ¡Öµ£¬·Ö±ðÇó¸ÅÂÊ£¬Ð´³ö·Ö²¼Áв¢ÇóÆÚÍû¡£
½â£º£¨I£©Éè¡°i¸öÈËÓÎÏ·A´³¹Ø³É¹¦¡±ÎªÊ¼þAi(i=0£¬1£¬2)£¬¡°j¸öÈËÓÎÏ·B´³¹Ø³É¹¦¡±ÎªÊ¼þBj(j=0£¬1£¬2)£¬
Ôò¡°ÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹ØµÄÈËÊý¡±ÎªA1B0+A2B1+A2B0£®
¡à P(A1B0+A2B1+A2B0)
=P(A1B0)+P(A2B1)+P(A2B0)
=P(A1)¡¤P(B0)+P(A2)¡¤P(B1)+P(A2)¡¤P(B0)
=
£®¼´ÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹ØµÄÈËÊýµÄ¸ÅÂÊΪ£®¡¡4·Ö
£¨II£©ÓÉÌâÉè¿ÉÖª£º¦Î=0£¬1£¬2£¬3£¬4£®
£¬
£¬
£¬
£¬
£®
¡à µÄ·Ö²¼ÁÐΪ£º
¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡¡10·Ö
¡à E=£®
½â£º£¨I£©Éè¡°i¸öÈËÓÎÏ·A´³¹Ø³É¹¦¡±ÎªÊ¼þAi(i=0£¬1£¬2)£¬¡°j¸öÈËÓÎÏ·B´³¹Ø³É¹¦¡±ÎªÊ¼þBj(j=0£¬1£¬2)£¬
Ôò¡°ÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹ØµÄÈËÊý¡±ÎªA1B0+A2B1+A2B0£®
¡à P(A1B0+A2B1+A2B0)
=P(A1B0)+P(A2B1)+P(A2B0)
=P(A1)¡¤P(B0)+P(A2)¡¤P(B1)+P(A2)¡¤P(B0)
=
£®¼´ÓÎÏ·A±»´³¹Ø³É¹¦µÄÈËÊý¶àÓÚÓÎÏ·B±»´³¹ØµÄÈËÊýµÄ¸ÅÂÊΪ£®¡¡4·Ö
£¨II£©ÓÉÌâÉè¿ÉÖª£º¦Î=0£¬1£¬2£¬3£¬4£®
£¬
£¬
£¬
£¬
£®
¡à µÄ·Ö²¼ÁÐΪ£º
0 | 1 | 2 | 3 | 4 | |
P |
¡à E=£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿