ÌâÄ¿ÄÚÈÝ

¾«Ó¢¼Ò½ÌÍøÒÑÖªÍÖÔ²C£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄÒ»¸ö½¹µãµ½³¤ÖáµÄÁ½¸ö¶ËµãµÄ¾àÀë·Ö±ðΪ2+
3
ºÍ2-
3
£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Èô¹ýÍÖÔ²µÄÓÒ½¹µã£¬Çãб½ÇΪ
¦Ð
3
µÄÖ±Ïß½»ÍÖÔ²ÓÚA¡¢BÁ½µã£¬ÇóÏ߶ÎABµÄ³¤£»
£¨3£©Èçͼ£¬¹ýÔ­µãÏ໥´¹Ö±µÄÁ½ÌõÖ±ÏßÓëÍÖÔ²
x2
4
+
y2
2
=1
µÄËĸö½»µã¹¹³ÉËıßÐÎPRSQ£¬ÉèÖ±ÏßPSµÄÇãб½ÇΪ¦È(¦È¡Ê(0£¬
¦Ð
2
])
£¬ÊÔÎÊ£º¡÷PSQÄÜ·ñΪÕýÈý½ÇÐΣ¬ÈôÄÜÇó¦ÈµÄÖµ£¬Èô²»ÄÜ£¬ËµÃ÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÍÖÔ²µÄÐÔÖÊ£¬¿ÉÖª½¹µãµ½³¤ÖáµÄÁ½¸ö¶ËµãµÄ¾àÀë·Ö±ðΪa+cºÍa-c£¬ÔÙ°ÑËù¸øÊýÖµ´úÈ룬¼´¿ÉµÃ³öa£¬bµÄÖµ£¬Çó³öÍÖÔ²µÄ·½³Ì£®
£¨2£©ÀûÓÃÏÒ³¤¹«Ê½¼ÆËã¼´¿É£¬×¢ÒâÉè¶ø²»Çó˼ÏëµÄÔËÓã®
£¨3£©ÏȼÙÉ裺¡÷PSQÄÜΪÕýÈý½ÇÐΣ¬ÉèÖ±ÏßPSµÄ·½³Ì£¬ÔòÖ±ÏßRQµÄ·½³ÌÒ²¿ÉÖª£¬·Ö±ðÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓÃÏÒ³¤¹«Ê½Çó³öPSÓëOQµÄ³¤¶È£¬ÔÙ¸ù¾ÝÕýÈý½ÇÐÎÖеĹØϵÅжϼ´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâµÃ
a+c=2+
3
a-c=2-
3
£¬½âµÃa=2£¬c=
3
£¬b=1

ËùÇóµÄ·½³ÌΪ
x2
4
+y2=1

£¨2£©Ö±Ïß·½³ÌΪy=
3
(x-
3
)
£¬
´úÈëÍÖÔ²·½³ÌµÃ13x2-24
3
x+32=0
£¬ËùÒÔ
x1+x2=
24
3
13
x1x2=
32
13
£¬
ÓÉÏÒ³¤¹«Ê½ÇóµÃAB=
16
13
£®
£¨3£©µ±PÔÚyÖáÉÏ£¬QÔÚxÖáÉÏʱ£¬¡÷PSQ²»ÊÇÕýÈý½ÇÐΣ® 
µ±P²»ÔÚyÖáÉÏʱ£¬ÉèÖ±ÏßPSµÄбÂÊΪk£¬P£¨x1£¬kx1£©£¬ÔòÖ±ÏßRQµÄбÂÊΪ-
1
k
£¬Q(x2£¬-
1
k
x2)

ÓÉ
y=kx
x2
4
+
y2
2
=1
µÃ
1
x12
=
1
4
+
k2
2
£¨1£©£¬Í¬Àí
1
x22
=
1
4
+
1
2k2
£¨2£©
ÓÉ¡÷PSQΪÕýÈý½ÇÐΣ¬µÃ
3
|OP|=|OQ|
£¬¼´3|OP|2=|OQ|2
ËùÒÔ3[x12+(kx1)2]=x22+(
x2
k
)2
£¬»¯¼òµÃ
3k2
x22
=
1
x12
£¬
3k2(
1
4
+
1
2k2
)=
1
4
+
k2
2
£¬¼´k2=-
5
4
£¼0
£®
ËùÒÔ¡÷OPQ²»ÊÇÕýÈý½ÇÐΣ®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÁËÍÖÔ²ÐÔÖʵÄÓ¦Óã¬ÏÒ³¤¹«Ê½µÄÓ¦Óã¬ÒÔ¼°Î¤´ï¶¨ÀíÔÚ½â¾öÖ±ÏßÓëԲ׶ÇúÏßλÖùØϵÅжÏÖеÄÓ¦ÓÃ
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø