题目内容

【题目】如图所示,正四面体ABCD的外接球的体积为4π,求正四面体的体积.

【答案】

【解析】

设正四面体的外接球的半径为R,由已知得R. 如图,连接DEO1D,因为AE为球的直径,故ADDEAEO1D.

ADa,则由已知得O1Da,故AO1a.所以O1E=2RAO1=2a.

由△AO1D∽△DO1EO1D2AO1·O1E,解得a,由此能求出正四面体ABCD的体积.

设正四面体的外接球的半径为R

由已知得πR3=4π,故R.

如图,连接DEO1D,因为AE为球的直径,故ADDEAEO1D.

ADa,则由已知得O1D×aa

AO1a.

所以O1E=2RAO1=2a.

由△AO1D∽△DO1EO1D2AO1·O1E,即a·,解得a (a=0舍去).

故正四面体的体积V×a2·AO1×8×.

练习册系列答案
相关题目

【题目】已知圆的圆心在直线上,且圆经过点与点.

(1)求圆的方程;

(2)过点作圆的切线,求切线所在的直线的方程.

【答案】(1);(2).

【解析】试题分析:(1)求出线段的中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求

(2)当切线斜率不存在时,可知切线方程为.

当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.

试题解析:((1)设 线段的中点为,∵

∴线段的垂直平分线为,与联立得交点

.

∴圆的方程为.

(2)当切线斜率不存在时,切线方程为.

当切线斜率存在时,设切线方程为,即

到此直线的距离为,解得,∴切线方程为.

故满足条件的切线方程为.

【点睛本题考查圆的方程的求法,圆的切线,中点弦等问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解.

型】解答
束】
20

【题目】某小型企业甲产品生产的投入成本(单位:万元)与产品销售收入(单位:万元)存在较好的线性关系,下表记录了最近5次产品的相关数据.

(投入成本)

7

10

11

15

17

(销售收入)

19

22

25

30

34

1)求关于的线性回归方程

2)根据(1)中的回归方程,判断该企业甲产品投入成本20万元的毛利率更大还是投入成本24万元的毛利率更大()?

相关公式 .

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网