题目内容
【题目】已知函数(,,),和是函数的图象与轴的2个相邻交点的横坐标,且当时,取得最大值2.
(1)求,,的值;
(2)将函数的图象上的每一点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,再将函数的图象向右平移个单位,得到函数的图象,求函数在区间上的最大值和最小值.
【答案】(1),, (2)最小值;最大值2.
【解析】
(1)由函数的图象的顶点坐标求出,由周期公式求出,由特殊点法的坐标求出的值;
(2)利用函数的图象变换规律,求得,的解析式,再根据正弦函数的定义域和值域,求得函数在区间,上的最大值和最小值.
解:(1)因为的最大值为2,所以.
因为和是的图象与轴的2个相邻的交点的横坐标,
所以.
又,所以.
又,所以,即.
因为,所以.
从而,即;
(2)由(1)知,.
依题意,,
因为,所以.
当,即时,取得最小值;
当,即时,取得最大值2.
【题目】某中学为了解高二年级中华传统文化经典阅读的整体情况,从高二年级随机抽取10名学生进行了两轮测试,并把两轮测试成绩的平均分作为该名学生的考核成绩.记录的数据如下:
1号 | 2号 | 3号 | 4号 | 5号 | 6号 | 7号 | 8号 | 9号 | 10号 | |
第一轮测试成绩 | 96 | 89 | 88 | 88 | 92 | 90 | 87 | 90 | 92 | 90 |
第二轮测试成绩 | 90 | 90 | 90 | 88 | 88 | 87 | 96 | 92 | 89 | 92 |
(Ⅰ)从该校高二年级随机选取一名学生,试估计这名学生考核成绩大于90 分的概率;
(Ⅱ)从考核成绩大于90分的学生中再随机抽取两名同学,求这两名同学两轮测试成绩均大于等于90分的概率;
(Ⅲ)记抽取的10名学生第一轮测试的平均数和方差分别为,,考核成绩的平均数和方差分别为,,试比较与, 与的大小.(只需写出结论)
【题目】某城市美团外卖配送员底薪是每月1800元,设每月配送单数为X,若,每单提成3元,若,每单提成4元,若,每单提成4.5元,饿了么外卖配送员底薪是每月2100元,设每月配送单数为Y,若,每单提成3元,若,每单提成4元,小想在美团外卖和饿了么外卖之间选择一份配送员工作,他随机调查了美团外卖配送员甲和饿了么外卖配送员乙在2019年4月份(30天)的送餐量数据,如下表:
表1:美团外卖配送员甲送餐量统计
日送餐量x(单) | 13 | 14 | 16 | 17 | 18 | 20 |
天数 | 2 | 6 | 12 | 6 | 2 | 2 |
表2:饿了么外卖配送员乙送餐量统计
日送餐量x(单) | 11 | 13 | 14 | 15 | 16 | 18 |
天数 | 4 | 5 | 12 | 3 | 5 | 1 |
(1)设美团外卖配送员月工资为,饿了么外卖配送员月工资为,当时,比较 与的大小关系
(2)将4月份的日送餐量的频率视为日送餐量的概率
(ⅰ)计算外卖配送员甲和乙每日送餐量的数学期望E(X)和E(Y)
(ⅱ)请利用所学的统计学知识为小王作出选择,并说明理由.