题目内容
9.比较下列各组数的大小:(1)3${\;}^{-\frac{5}{2}}$和3.1${\;}^{-\frac{5}{2}}$;
(2)-8${\;}^{-\frac{7}{8}}$和一($\frac{1}{9}$)${\;}^{\frac{7}{8}}$;
(3)(-$\frac{2}{3}$)${\;}^{-\frac{2}{3}}$和(-$\frac{π}{6}$)${\;}^{-\frac{2}{3}}$;
(4)4.1${\;}^{\frac{2}{5}}$,3.8${\;}^{-\frac{2}{3}}$和(一1.9)${\;}^{\frac{3}{5}}$.
分析 (1)由于函数$y={x}^{\frac{-5}{2}}$在(0,+∞)上单调递减,即可得出;
(2)一($\frac{1}{9}$)${\;}^{\frac{7}{8}}$=-${9}^{-\frac{7}{8}}$,由于8${\;}^{-\frac{7}{8}}$>${9}^{-\frac{7}{8}}$,即可得出;
(3)由于(-$\frac{2}{3}$)${\;}^{-\frac{2}{3}}$=$(\frac{3}{2})^{\frac{2}{3}}$,(-$\frac{π}{6}$)${\;}^{-\frac{2}{3}}$=$(\frac{6}{π})^{\frac{2}{3}}$,$\frac{3}{2}$<$\frac{6}{π}$,函数y=${x}^{\frac{2}{3}}$在(0,+∞)上单调递增即可得出;
(4)由于4.1${\;}^{\frac{2}{5}}$>1,0<3.8${\;}^{-\frac{2}{3}}$<0,(一1.9)${\;}^{\frac{3}{5}}$<0.即可得出.
解答 解:(1)由于函数$y={x}^{\frac{-5}{2}}$在(0,+∞)上单调递减,
∴3${\;}^{-\frac{5}{2}}$>3.1${\;}^{-\frac{5}{2}}$;
(2)一($\frac{1}{9}$)${\;}^{\frac{7}{8}}$=-${9}^{-\frac{7}{8}}$,
∵8${\;}^{-\frac{7}{8}}$>${9}^{-\frac{7}{8}}$,
∴-8${\;}^{-\frac{7}{8}}$<-($\frac{1}{9}$)${\;}^{\frac{7}{8}}$;
(3)∵(-$\frac{2}{3}$)${\;}^{-\frac{2}{3}}$=$(\frac{3}{2})^{\frac{2}{3}}$,(-$\frac{π}{6}$)${\;}^{-\frac{2}{3}}$=$(\frac{6}{π})^{\frac{2}{3}}$,$\frac{3}{2}$<$\frac{6}{π}$,
∴$(\frac{3}{2})^{\frac{2}{3}}$<$(\frac{6}{π})^{\frac{2}{3}}$;
(4)4.1${\;}^{\frac{2}{5}}$>1,0<3.8${\;}^{-\frac{2}{3}}$<0,(一1.9)${\;}^{\frac{3}{5}}$<0.
∴4.1${\;}^{\frac{2}{5}}$>3.8${\;}^{-\frac{2}{3}}$>(一1.9)${\;}^{\frac{3}{5}}$.
点评 本题查克拉指数函数与幂函数的单调性,考查了推理能力与计算能力,属于基础题.