搜索
题目内容
[2013·北京海淀模拟]已知盒中装有3个红球、2个白球、5个黑球,它们大小形状完全相同,现需一个红球,甲每次从中任取一个不放回,在他第一次拿到白球的条件下,第二次拿到红球的概率( )
A.
B.
C.
D.
试题答案
相关练习册答案
B
事件A:“第一次拿到白球”,B:“第二拿到红球”,则P(A)=
=
,P(AB)=
·
=
,故P(B|A)=
=
.
练习册系列答案
激活中考系列答案
加练半小时系列答案
尖子生超级训练系列答案
减负增效拓展三阶训练系列答案
江苏13大市中考28套卷系列答案
天利38套中考试题精粹系列答案
教材解读与拓展系列答案
教材快线系列答案
教材完全学案系列答案
精析巧练系列答案
相关题目
为了解某校学生的视力情况,现采用随机抽样的方式从该校的A,B两班中各抽5名学生进行视力检测.检测的数据如下:
A班5名学生的视力检测结果:4.3,5.1,4.6,4.1,4.9.
B班5名学生的视力检测结果:5.1,4.9,4.0,4.0,4.5.
(1)分别计算两组数据的平均数,从计算结果看,哪个班的学生视力较好?;
(2)由数据判断哪个班的5名学生视力方差较大?(结论不要求证明)
(3)根据数据推断A班全班40名学生中有几名学生的视力大于4.6?
袋中装有大小和形状相同的小球若干个黑球和白球,且黑球和白球的个数比为4:3,从中任取2个球都是白球的概率为
现不放回从袋中摸取球,每次摸一球,直到取到白球时即终止,每个球在每一次被取出的机会是等可能的,用
表示取球终止时所需要的取球次数.
(1)求袋中原有白球、黑球的个数;
(2)求随机变量
的分布列和数学期望.
对某电子元件进行寿命追踪调查,所得情况如右频率分布直方图.
(1)图中纵坐标
处刻度不清,根据图表所提供的数据还原
;
(2)根据图表的数据按分层抽样,抽取
个元件,寿命为
之间的应抽取几个;
(3)从(2)中抽出的寿命落在
之间的元件中任取
个元件,求事件“恰好有一个寿命为
,一个寿命为
”的概率.
5张卡片上分别写有数字1,2,3,4,5,从这5张卡片中随机抽取2张,则取出2张卡片上数字之和为偶数的概率为( )
A.
B.
C.
D.
一个口袋中装有大小相同的2个红球,3个黑球和4个白球,从口袋中一次摸出一个球,摸出的球不再放回.
(1)连续摸球2次,求第一次摸出黑球,第二次摸出白球的概率;
(2)如果摸出红球,则停止摸球,求摸球次数不超过3次的概率.
一大学生毕业找工作,在面试考核中,他共有三次答题机会(每次问题不同).假设他能正确回答每题的概率均为
,规定有两次回答正确即通过面试,那么该生“通过面试”的概率为
.
[2014·宁波调研]甲、乙两人下棋,和棋的概率为
,乙获胜的概率为
,则下列说法正确的是( )
A.甲获胜的概率是
B.甲不输的概率是
C.乙输了的概率是
D.乙不输的概率是
口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是( )
A.0.42
B.0.28
C.0.3
D.0.7
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总