题目内容
【题目】牛顿法求方程f(x)=0近似根原理如下:求函数y=f(x)在点(xn , f(xn))处的切线y=f′(xn)(x﹣xn)+f(xn),其与x轴交点横坐标xn+1=xn﹣ (n∈N*),则xn+1比xn更靠近f(x)=0的根,现已知f(x)=x2﹣3,求f(x)=0的一个根的程序框图如图所示,则输出的结果为( )
A.2
B.1.75
C.1.732
D.1.73
【答案】B
【解析】解:f(x)=x2﹣3,则f′(x)=2x, 模拟程序的运行,可得
n=1,x=3
执行循环体,x=3﹣ =2,n=2
满足条件n<3,执行循环体,x=2﹣ = ,n=3
不满足条件n<3,退出循环,输出x的值为 ,即1.75.
故选:B.
【考点精析】关于本题考查的程序框图,需要了解程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明才能得出正确答案.
练习册系列答案
相关题目
【题目】某电子产品公司前四年的年宣传费x(单位:千万元)与年销售量y(单位:百万部)的数据如下表所示:
x(单位:千万元) | 1 | 2 | 3 | 4 |
y(单位:百万部) | 3 | 5 | 6 | 9 |
可以求y关于x的线性回归方程为 =1.9x+1.
参考公式:回归方程 = x+ 中斜率和截距的最小二乘法估计公式分别为:
= , = ﹣ .
(1)该公司下一年准备投入10千万元的宣传费,根据所求得的回归方程预测下一年的销售量m:
(2)根据下表所示五个散点数据,求出y关于x的线性回归方程 = x+ .
x(单位:千万元) | 1 | 2 | 3 | 4 | 10 |
y(单位:百万部) | 3 | 5 | 6 | 9 | m |
并利用小二乘法的原理说明 = x+ 与 =1.9x+1的关系.