题目内容
设公差不为0的等差数列{an}的首项为1,且a2,a5,a14构成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足
+
+…+
=1-
,n∈N*,求{bn}的前n项和Tn.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足
b1 |
a1 |
b2 |
a2 |
bn |
an |
1 |
2n |
分析:(Ⅰ)设等差数列{an}的公差为d(d≠0),由a2,a5,a14构成等比数列得关于d的方程,解出d后利用等差数列的通项公式可得an;
(Ⅱ)由条件可知,n≥2时,
=1-
-(1-
)=
,再由(Ⅰ)可求得bn,注意验证n=1的情形,利用错位相减法可求得Tn;
(Ⅱ)由条件可知,n≥2时,
bn |
an |
1 |
2n |
1 |
2n-1 |
1 |
2n |
解答:解:(Ⅰ)设等差数列{an}的公差为d(d≠0),
∵a2,a5,a14构成等比数列,
∴a52=a2a14,即(1+4d)2=(1+d)(1+13d),
解得d=0(舍去),或d=2.
∴an=1+(n-1)×2=2n-1.
(Ⅱ)由已知,
+
+…+
=1-
,n∈N*,
当n=1时,
=
;
当n≥2时,
=1-
-(1-
)=
.
∴
=
,n∈N*.
由(Ⅰ),知an=2n-1,n∈N*,
∴bn=
,n∈N*.
又Tn=
+
+
+…+
,
则
Tn=
+
+…+
+
.
两式相减,得
Tn=
+(
+
+…+
)-
=
-
-
,
∴Tn=3-
.
∵a2,a5,a14构成等比数列,
∴a52=a2a14,即(1+4d)2=(1+d)(1+13d),
解得d=0(舍去),或d=2.
∴an=1+(n-1)×2=2n-1.
(Ⅱ)由已知,
b1 |
a1 |
b2 |
a2 |
bn |
an |
1 |
2n |
当n=1时,
b1 |
a1 |
1 |
2 |
当n≥2时,
bn |
an |
1 |
2n |
1 |
2n-1 |
1 |
2n |
∴
bn |
an |
1 |
2n |
由(Ⅰ),知an=2n-1,n∈N*,
∴bn=
2n-1 |
2n |
又Tn=
1 |
2 |
3 |
22 |
5 |
23 |
2n-1 |
2n |
则
1 |
2 |
1 |
22 |
3 |
23 |
2n-3 |
2n |
2n-1 |
2n+1 |
两式相减,得
1 |
2 |
1 |
2 |
2 |
22 |
2 |
23 |
2 |
2n |
2n-1 |
2n+1 |
3 |
2 |
1 |
2n-1 |
2n-1 |
2n+1 |
∴Tn=3-
2n+3 |
2n |
点评:本题考查等差数列等比数列的综合应用、错位相减法对数列求和,属中档题.
练习册系列答案
相关题目