题目内容
已知函数且.
(1)求的值;
(2)判断在上的单调性,并给予证明.
(1)求的值;
(2)判断在上的单调性,并给予证明.
(1);(2)在上是减函数.
试题分析:(1)表示函数中自变量取值为时对应的函数值;(2)函数单调性的证明一般是用单调性的定义证明,即设是区间上的任意两个实数,且,然后证明(函数在区间上为为增函数)或(函数在区间上为减函数).而比较的大小,通常是作差,然后把差变成若干因式之积,从而很快判断出差的正负.
试题解析:解 (1)∵,∴,.
(2)在上是减函数.
证明如下:
设任意,且.
则.
∵,∴.
∴,即,
故在上是减函数.
练习册系列答案
相关题目