题目内容

已知数列满足,()
(1)若,数列单调递增,求实数的取值范围;
(2)若,试写出对任意成立的充要条件,并证明你的结论.
(1);(2)充要条件为.

试题分析:本题主要考查数列的递推公式、数列的单调性、充要条件、数学归纳法等基础知识,考查学生的分析问题解决问题的能力、计算能力、逻辑推理能力.第一问,数列单调递增,将已知条件代入,得到所满足条件,即需要满足的条件,即得到a的取值范围,第二问,必要性:法一:由直接解出,法二:利用已知的递推公式得到的关系,再利用配方法得到的最小值,充分性:用数学归纳法证明.
试题解析:(1)若,则

,所以只需.
所以实数的取值范围为.    6分
(2)对任意成立的充要条件为.必要性:由,解出
(另解:假设,得,令,可得:,即有.)    8分
充分性:数学归纳法证明:时,对一切成立.
证明:(1)显然时,结论成立;
(2)假设时结论成立,即
时,.
考察函数
①若,由,知在区间上单调递增.由假设.
②若,对总有
则由假设得.
所以,时,结论成立,
综上可知:当时,对一切成立.
对任意成立的充要条件是.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网