题目内容
10.已知a=$\sqrt{2}$,b=2$\sqrt{2}$.求值:(1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$.
分析 (1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$=($\sqrt{a}$+$\sqrt{b}$)2-(a+b),从而解得;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$=$\frac{{a}^{\frac{3}{2}}•b•{a}^{\frac{1}{6}}•{b}^{\frac{1}{3}}}{a•{b}^{2}•\frac{{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}}}$=${a}^{\frac{3}{2}+\frac{1}{6}-1+\frac{1}{3}}$•${b}^{1+\frac{1}{3}-2-\frac{1}{3}}$,从而解得.
解答 解:(1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$
=($\sqrt{a}$+$\sqrt{b}$)2-(a+b)
=a+b+2$\sqrt{ab}$-a-b=2$\sqrt{ab}$=2$\sqrt{4}$=4;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$=$\frac{{a}^{\frac{3}{2}}•b•{a}^{\frac{1}{6}}•{b}^{\frac{1}{3}}}{a•{b}^{2}•\frac{{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}}}$
=${a}^{\frac{3}{2}+\frac{1}{6}-1+\frac{1}{3}}$•${b}^{1+\frac{1}{3}-2-\frac{1}{3}}$
=$\frac{a}{b}$=$\frac{1}{2}$.
点评 本题考查了有理指数幂的计算与应用.
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{2}$ | D. | 2$\sqrt{3}$ |
A. | 9 | B. | 8 | C. | 7 | D. | 6 |
A. | -1或0 | B. | -1或1 | C. | 1或0 | D. | 1 |
A. | $\frac{2\sqrt{5}}{15}$ | B. | $\frac{\sqrt{2}}{4}$ | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{2}}{2}$ |