题目内容

10.已知a=$\sqrt{2}$,b=2$\sqrt{2}$.求值:
(1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$.

分析 (1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$=($\sqrt{a}$+$\sqrt{b}$)2-(a+b),从而解得;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$=$\frac{{a}^{\frac{3}{2}}•b•{a}^{\frac{1}{6}}•{b}^{\frac{1}{3}}}{a•{b}^{2}•\frac{{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}}}$=${a}^{\frac{3}{2}+\frac{1}{6}-1+\frac{1}{3}}$•${b}^{1+\frac{1}{3}-2-\frac{1}{3}}$,从而解得.

解答 解:(1)$\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}-\sqrt{b}}$(a-b)-$\sqrt{(a+b)^{2}}$
=($\sqrt{a}$+$\sqrt{b}$)2-(a+b)
=a+b+2$\sqrt{ab}$-a-b=2$\sqrt{ab}$=2$\sqrt{4}$=4;
(2)$\frac{\sqrt{{a}^{3}{b}^{2}\root{3}{a{b}^{2}}}}{({a}^{\frac{1}{4}}{b}^{\frac{1}{2}})^{4}\root{3}{\frac{b}{a}}}$=$\frac{{a}^{\frac{3}{2}}•b•{a}^{\frac{1}{6}}•{b}^{\frac{1}{3}}}{a•{b}^{2}•\frac{{b}^{\frac{1}{3}}}{{a}^{\frac{1}{3}}}}$
=${a}^{\frac{3}{2}+\frac{1}{6}-1+\frac{1}{3}}$•${b}^{1+\frac{1}{3}-2-\frac{1}{3}}$
=$\frac{a}{b}$=$\frac{1}{2}$.

点评 本题考查了有理指数幂的计算与应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网