题目内容
f(x)定义在R上的偶函数,在区间(-∞,0]上递增,且有f(2a2+a+1)<f(3a2-2a+1),求a的取值范围.
法1
2a2+a+1=2(a+
)2+
≥
3a2-2a+1=3(a-
)2+
≥
(4分)
f(x)定义在R上的偶函数,在区间(-∞,0]上递增
因此函数f(x)在[0,+∞)上递减(6分)
又f(2a2+a+1)<f(3a2-2a+1)
2a2+a+1>3a2-2a+1(10分)
∴a2-3a<0∴0<a<3.(12分)
法2:2a2+a+1=2(a+
)2+
≥
3a2-2a+1=3(a-
)2+
≥
(4分)
又f(x)定义在R上的偶函数,且
f(2a2+a+1)<f(3a2-2a+1)
∴f(-2a2-a-1)<f(-3a2+2a-1)(6分)
又f(x)在区间(-∞,0]上递增
∴-2a2-a-1<-3a2+2a-1(10分)
∴a2-3a<0∴0<a<3.(12分)
2a2+a+1=2(a+
1 |
4 |
7 |
8 |
7 |
8 |
3a2-2a+1=3(a-
1 |
3 |
2 |
3 |
2 |
3 |
f(x)定义在R上的偶函数,在区间(-∞,0]上递增
因此函数f(x)在[0,+∞)上递减(6分)
又f(2a2+a+1)<f(3a2-2a+1)
2a2+a+1>3a2-2a+1(10分)
∴a2-3a<0∴0<a<3.(12分)
法2:2a2+a+1=2(a+
1 |
4 |
7 |
8 |
7 |
8 |
3a2-2a+1=3(a-
1 |
3 |
2 |
3 |
2 |
3 |
又f(x)定义在R上的偶函数,且
f(2a2+a+1)<f(3a2-2a+1)
∴f(-2a2-a-1)<f(-3a2+2a-1)(6分)
又f(x)在区间(-∞,0]上递增
∴-2a2-a-1<-3a2+2a-1(10分)
∴a2-3a<0∴0<a<3.(12分)
练习册系列答案
相关题目