题目内容

49、已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ?β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有(  )
分析:要想判断变换后真命题的个数,我们可进行分类讨论,在每种情况中,根据空间直线与平面的位置关系的判定定理和性质定理进行判断,即可得到结论.
解答:解:若α,β换为直线a,b,则命题化为“a∥b,且a⊥γ?b⊥γ”此命题为真命题;
若α,γ换为直线a,b,则命题化为“a∥β,且a⊥b?b⊥β”此命题为假命题;
若β,γ换为直线a,b,则命题化为“a∥α,且α⊥b?a⊥β”此命题为真命题,
即真命题有2个;
故答案选择:C
点评:判断或证明线面平行的常用方法有:①利用线面平行的定义(无公共点);②利用线面平行的判定定理(a?α,b?α,a∥b?a∥α);③利用面面平行的性质定理(α∥β,a?α?a∥β);④利用面面平行的性质(α∥β,a?α,a?,a∥α??a∥β).线线垂直可由线面垂直的性质推得,直线和平面垂直,这条直线就垂直于平面内所有直线,这是寻找线线垂直的重要依据.垂直问题的证明,其一般规律是“由已知想性质,由求证想判定”,也就是说,根据已知条件去思考有关的性质定理;根据要求证的结论去思考有关的判定定理,往往需要将分析与综合的思路结合起来.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网