题目内容

8、已知α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3.那么“P1P2=P2P3”是“d1=d2”的(  )
分析:由已知中α1,α2,α3是三个相互平行的平面,平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2,直线l与α1,α2,α3分别相交于P1,P2,P3,结合面面平行的性质,我们分别判断“P1P2=P2P3”?“d1=d2”及“d1=d2”?“P1P2=P2P3”的真假,结合充要条件的定义,即可得到答案.
解答:解:由已知中α1,α2,α3是三个相互平行的平面,
且平面α1,α2之间的距离为d1,平面α2,α3之前的距离为d2
又由直线l与α1,α2,α3分别相交于P1,P2,P3
则“P1P2=P2P3”?“d1=d2”为真命题
且“d1=d2”?“P1P2=P2P3”是真命题
故“P1P2=P2P3”是“d1=d2”的充分必要条件
故选C
点评:判断充要条件的方法是:①若p?q为真命题且q?p为假命题,则命题p是命题q的充分不必要条件;②若p?q为假命题且q?p为真命题,则命题p是命题q的必要不充分条件;③若p?q为真命题且q?p为真命题,则命题p是命题q的充要条件;④若p?q为假命题且q?p为假命题,则命题p是命题q的即不充分也不必要条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网