题目内容
【题目】一家小微企业生产某种小型产品的月固定成本为1万元,每生产1万件需要再投入2万元,假设该企业每个月可生产该小型产品万件并全部销售完,每万件的销售收入为万元,且每生产1万件政府给予补助万元.
(1)求该企业的月利润(万元)关于月产量(万件)的函数解析式;
(2)若月产量万件时,求企业在生产这种小型产品中所获得的月利润最大值(万元)及此时的月生产量值(万件).
(注:月利润=月销售收入+月政府补助月总成本)
【答案】(1);
(2)当月产量为3万件时,该企业所获得的最大月利润为万元.
【解析】
(1)根据月利润=月销售收入+月政府补助月总成本列式即可.
(2)求导分析利润函数的单调性,进而求得函数的极值点与最值即可.
(1)依题意得
(定义域未标注的扣一分)
(2)当时,
∵
∴当时,,当时,
所以在上单调递增,在上单调递减
当时,
∴当月产量为3万件时,最大月利润为万元.
答:当月产量为3万件时,该企业所获得的最大月利润为万元.
练习册系列答案
相关题目
【题目】某校从2011年到2018年参加“北约”,“华约”考试而获得加分的学生(每位学生只能参加“北约”,“华约”一种考试)人数可以通过以下表格反映出来.(为了方便计算,将2011年编号为1,2012年编号为2,依此类推……)
年份x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
人数y | 2 | 3 | 4 | 4 | 7 | 7 | 6 | 6 |
(1)据悉,该校2018年获得加分的6位同学中,有1位获得加20分,2位获得加15分,3位获得加10分,从该6位同学中任取两位,记该两位同学获得的加分之和为X,求X的分布列及期望.
(2)根据最近五年的数据,利用最小二乘法求出y与x之间的线性回归方程,并用以预测该校2019年参加“北约”,“华约”考试而获得加分的学生人数.(结果要求四舍五入至个位)
参考公式: