题目内容

【题目】如图,圆内接四边形ABCD中,BD是圆的直径,AB=AC,延长AD与BC的延长线相交于点E,作EF⊥BD于F.

(1)证明:EC=EF;
(2)如果DC= BD=3,试求DE的长.

【答案】
(1)证明:由圆内接四边形的性质,可求得∠ABC=∠CDE;

∵AB=AC,

∴∠ABC=∠ACB,

∵∠ACB=∠ADB=∠EDF,

∴∠CDE=∠EDF,

∵BD是圆的直径,

∴BC⊥DC,

∵EF⊥BD,DE=DE,

∴△DEF≌△DEC,

∴EC=EF


(2)解:∵DC= BD=3,BC⊥DC,

∴∠BDC=60°,

∴∠BAC=60°,

∴∠ABC=60°,

∴∠EDC=60°,

∴∠BDC=∠EDC,

∵DC⊥BC,

∴DE=BD=6.


【解析】(1)通过证明△DEF≌△DEC,即可证明:EC=EF;(2)如果DC= BD=3,证明∠BDC=∠EDC,利用等腰三角形的性质求DE的长.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网