题目内容

【题目】设抛物线的焦点为,过点作直线与抛物线交于两点,点满足,过轴的垂线与抛物线交于点,若,则点的横坐标为____________________

【答案】1 8

【解析】

利用抛物线的定义,求得点的坐标,设出直线的方程,联立直线的方程和抛物线的方程,利用韦达定理,求得点坐标的表达式,根据两点的纵坐标相同列方程,解方程求得直线的斜率,由此求得.

由于点满足,所以是线段的中点.抛物线的焦点坐标为,准线方程为.,由于在抛物线上,且,根据抛物线的定义得,所以,则,不妨设.若直线斜率不存在,则,则,此时的纵坐标和的纵坐标不相同,不符合题意.所以直线的斜率存在.,设直线的方程为,代入抛物线方程并化简得,则.由于是线段中点,所以,而,所以,即,即,解得.所以,所以,则到准线的距离为,根据抛物线的定义结合中位线的性质可知.

故答案为:(1). 1 (2). 8

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网