题目内容

【题目】已知圆锥曲线 为参数)和定点 F1 , F2是圆锥曲线的左右焦点。
(1)求经过点F2且垂直于直线AF1的直线l的参数方程;
(2)以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,求直线AF2的极坐标方程.

【答案】
(1)解:圆锥曲线

化为普通方程)

所以 , ,则直线 的斜率

于是经过点 且垂直于直线 的直线l的斜率

直线l的倾斜角为

所以直线l参数方程 ,


(2)解:直线AF2的斜率k=- ,倾斜角是120°,设P(ρ,θ)是直线AF2上任一点即ρsin(120°-θ)=sin60°,化简得 ρcosθ+ρsinθ= ,故可知
【解析】本题主要考查了椭圆的参数方程,解决问题的关键是(1)利用三角函数中的平方关系消去参数θ,将圆锥曲线化为普通方程,从而求出其焦点坐标,再利用直线的斜率求得直线L的倾斜角,最后利用直线的参数方程形式,即可得到直线L的参数方程.(2)设P(ρ,θ)是直线AF2上任一点,利用正弦定理列出关于ρ、θ的关系式,化简即得直线AF2的极坐标方程.
【考点精析】本题主要考查了椭圆的参数方程的相关知识点,需要掌握椭圆的参数方程可表示为才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网