题目内容

19.下列关于函数f(x)=(x2-2x)ex的判断正确的是(  )
①f(x)<0的解集是{x|0<x<2} ②f(-$\sqrt{2}$)是极小值,f($\sqrt{2}$)是极大值
③f(x)没有最大值      ④f(x)有最大值.
A.②④B.①③C.①④D.①②③

分析 令f(x)<0可解x的范围确定①正确;对函数f(x)进行求导,然后令f'(x)=0求出x,根据f'(x)的正负判断原函数的单调性进而可确定②不正确;根据函数的单调性可判断③正确④不正确,从而得到答案.

解答 解:由f(x)<0⇒(x2-2x)ex<0⇒x2-2x<0⇒0<x<2,故①正确;
f′(x)=ex(x2-2),由f′(x)=0得x=±$\sqrt{2}$,
由f′(x)>0得x>$\sqrt{2}$或x<-$\sqrt{2}$,
由f′(x)<0得-$\sqrt{2}$<x<$\sqrt{2}$,
∴f(x)的单调增区间为(-∞,-$\sqrt{2}$),($\sqrt{2}$,+∞).单调减区间为(-$\sqrt{2}$,$\sqrt{2}$).
∴f(x)的极小值为f($\sqrt{2}$),极大值为f(-$\sqrt{2}$),故②不正确.
∵x>2时,f(x)>0恒成立.
∴f(x)没有最大值,∴③正确,④不正确.
故选:B.

点评 本题主要考查函数的极值与其导函数关系,即函数取到极值时导函数一定等于0,但导函数等于0时还要判断原函数的单调性才能确定原函数的极值点.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网