题目内容
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC, D是PB上一点,且CD⊥平面PAB.
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
(1)求证:AB⊥平面PCB;
(2)求异面直线AP与BC所成角的大小;
(1)见解析;(2).
试题分析:(1)主要考虑证明AB垂直于平面PCB内的两条相交直线.根据PC⊥平面ABC,AB平面ABC,得到PC⊥AB.根据CD⊥平面PAB,AB平面PAB,得到OC⊥AB.因此AB平面PCB.
(2)有两种思路,
一是“几何法”,通过“一作,二证,三计算”确定异面直线PA与BC所成的角为.
二是“向量法”,以B为原点,建立如图所示的坐标系.通过确定向量的坐标
利用
得到异面直线AP与BC所成的角为
试题解析:解法一:(1)∵PC⊥平面ABC,AB平面ABC,∴PC⊥AB. 2分
∵CD⊥平面PAB,AB平面PAB,∴OC⊥AB. 3分
又PCCD=C,∴AB平面PCB. 4分
(2)过点A作AF//BC,且AF=BC,连接PF,CF.
则∠PAF为异面直线PA与BC所成的角. 5分
由(1)可得AB⊥BC,∴CF⊥AF.
由三垂线定理,得PF⊥AF。
则AF=CF=
在Rt△PFA中,
∴异面直线PA与BC所成的角为. 12分
解法二:(1)同解法一.
(2)由(1)AB⊥平面PCB,∵PC=AC=2,
又∵AB=BC,可求得BC=
以B为原点,建立如图所示的坐标系.
则A(0,,0),B(0,0,0),C(,0,0),P(,0,2).
8分
则
∴异面直线AP与BC所成的角为 12分
练习册系列答案
相关题目