题目内容
设椭圆的中心和抛物线的顶点均为原点,、的焦点均在轴上,过的焦点F作直线,与交于A、B两点,在、上各取两个点,将其坐标记录于下表中:
(1)求,的标准方程;
(2)若与交于C、D两点,为的左焦点,求的最小值;
(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
(1)求,的标准方程;
(2)若与交于C、D两点,为的左焦点,求的最小值;
(3)点是上的两点,且,求证:为定值;反之,当为此定值时,是否成立?请说明理由.
(1) : ;(2);(3)证明见解析.
试题分析:(1)分析哪些点在椭圆上,哪些点在抛物线上,显然是椭圆的顶点,因此,从而点是椭圆上的点,另两点在抛物线上,代入它们的标准方程可求得其方程;(2)与的顶点都是,底在同一直线上,因此基、其面积之比为底的比,即,这样我们只要求出直线与已知两曲线相交弦长即可,直线与曲线交于两点,其弦长为,当然由于直线过圆锥曲线的焦点,弦长也可用焦半径公式表示;(3)从题意可看出,只有把,求出来,才能得出结论,为了求,,我们可设方程为,则方程为,这样,都能用表示出来,再计算可得其为定值,反之若,我们只能设方程为,方程为,分别求出,代入此式,得出,如果一定能得到1,则就一定有,否则就不一定有.
试题解析:(1)在椭圆上,在抛物线上,
: (4分)
(2)(理) =.
是抛物线的焦点,也是椭圆的右焦点,①当直线的斜率存在时,
设:,,
联立方程,得,时恒成立.
(也可用焦半径公式得:) (5分)
联立方程,得,恒成立.
, (6分)
=. (8分)
②当直线的斜率不存在时,:,
此时,,,=. (9分)
所以,的最小值为. (10分)
(3)(理)证明:①若P、Q分别为长轴和短轴的端点,则=.(11分)
②若P、Q都不为长轴和短轴的端点,
设
联立方程,解得; (12分)
同理,联立方程,解得;
(13分)
反之,对于上的任意两点,当时,
设,,易得
;,
由得,
即,亦即, (15分)
所以当为定值时,不成立 (16分)
“反之”的方法二:如果有,且不在坐标轴上,作关于坐标轴对称的射线与交于,,显然,与不可能同时成立.
练习册系列答案
相关题目