题目内容
设椭圆
的中心和抛物线
的顶点均为原点
,
、
的焦点均在
轴上,过
的焦点F作直线
,与
交于A、B两点,在
、
上各取两个点,将其坐标记录于下表中:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447282271108.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447282436713.jpg)
(1)求
,
的标准方程;
(2)若
与
交于C、D两点,
为
的左焦点,求
的最小值;
(3)点
是
上的两点,且
,求证:
为定值;反之,当
为此定值时,
是否成立?请说明理由.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728071292.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728118266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447282271108.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447282436713.jpg)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
(2)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728321356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728352734.png)
(3)点
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728368417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728430745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728430745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728493786.png)
:
;(2)
;(3)证明见解析.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728493786.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728508168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728539534.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728571373.png)
试题分析:(1)分析哪些点在椭圆上,哪些点在抛物线上,显然
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728586495.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728602386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728617654.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728633599.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728664592.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728321356.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728352734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728727630.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728758575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728789621.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447288051048.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728820396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728851405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728820396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728851405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728898371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728914473.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728929378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728945562.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728820396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728851405.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728992312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728430745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729039408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728430745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729070440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728898371.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729101511.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728929378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729132533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729148545.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729163440.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729179463.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447292261118.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729241886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729257818.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728508168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056283.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728539534.png)
(2)(理)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729351863.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728352734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447293821266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729397479.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729460610.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729475934.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729491759.png)
联立方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729507961.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729538904.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729553418.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729569426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728508168.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447296162632.png)
(也可用焦半径公式得:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447296311276.png)
联立方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447296471134.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447296781022.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729569426.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447297562973.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729787195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728352734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447298191998.png)
②当直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728149280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729865323.png)
此时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729881502.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729897527.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728352734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728571373.png)
所以,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728352734.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728571373.png)
(3)(理)证明:①若P、Q分别为长轴和短轴的端点,则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728430745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729039408.png)
②若P、Q都不为长轴和短轴的端点,
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447300211080.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730037827.png)
联立方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447300531017.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447300681185.png)
同理,联立方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447300841127.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447300991135.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447301153232.png)
反之,对于
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728368417.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730146939.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730162650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730177673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447302091207.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447302091223.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730146939.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447302551216.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240447302711404.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730287504.png)
所以当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728430745.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044729039408.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
“反之”的方法二:如果有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728929378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728929378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728056266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730396360.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730411530.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044728415503.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824044730427529.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目