题目内容
【题目】已知椭圆
(1)求椭圆的标准方程和离心率;
(2)是否存在过点的直线与椭圆相交于,两点,且满足.若存在,求出直线的方程;若不存在,请说明理由.
【答案】(1),;(2)存在,7x﹣+3=0或7x+﹣3=0
【解析】
(1)将椭圆方程化为标准方程,可得a,b,c,由离心率公式可得所求值;
(2)假设存在过点P(0,3)的直线l与椭圆C相交于A,B两点,且满足,可设直线l的方程为x=m(y﹣3),联立椭圆方程,消去x可得y的二次方程,运用韦达定理和判别式大于0,再由向量共线的坐标表示,化简整理解方程,即可判断是否存在这样的直线.
(1)由,得,进而,;
(2)假设存在过点P(0,3)的直线l与椭圆C相交于A,B两点,且满足,
可设直线l的方程为x=m(y﹣3),联立椭圆方程x2+2y2=4,
可得(2+m2)y2﹣6m2y+9m2﹣4=0,△=36m4﹣4(2+m2)(9m2﹣4)>0,即m2<,
设A(x1,y1),B(x2,y2),可得y1+y2=,y1y2=,①
由,可得(x2,y2﹣3)=2(x1,y1﹣3),即y2﹣3=2(y1﹣3),即y2=2y1﹣3,②
将②代入①可得3y1﹣3=,y1(2y1﹣3)=,
消去y1,可得=,解得m2=,所以,
故存在这样的直线l,且方程为7x﹣y+3=0或7x+y﹣3=0.
【题目】某生产企业研发了一种新产品,该新产品在某网店试销一个阶段后得到销售单价和月销售量之间的一组数据,如下表所示:
销售单价(元) | 9 | 9.5 | 10 | 10.5 | 11 |
月销售量(万件) | 11 | 10 | 8 | 6 | 5 |
(1)根据统计数据,求出关于的回归直线方程,并预测月销售量不低于12万件时销售单价的最大值;
(2)生产企业与网店约定:若该新产品的月销售量不低于10万件,则生产企业奖励网店1万元;若月销售量不低于8万件且不足10万件,则生产企业奖励网店5000元;若月销售量低于8万件,则没有奖励.现用样本估计总体,从上述5个销售单价中任选2个销售单价,下个月分别在两个不同的网店进行销售,求这两个网店下个月获得奖励的总额的分布列及其数学期望.
参考公式:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为,.
参考数据:,.
【题目】企业需为员工缴纳社会保险,缴费标准是根据职工本人上一年度月平均工资(单位:元)的缴纳,
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
t | 1 | 2 | 3 | 4 | 5 |
y | 270 | 330 | 390 | 460 | 550 |
某企业员工甲在2014年至2018年各年中每月所撒纳的养老保险数额y(单位:元)与年份序号t的统计如下表:
(1)求出t关于t的线性回归方程;
(2)试预测2019年该员工的月平均工资为多少元?
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
(注:,,其中)