题目内容
11.已知函数f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x≥10}\\{kx+1,x<10}\end{array}\right.$,若f(x)在R上是减函数,求实数k的取值范围.分析 若f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x≥10}\\{kx+1,x<10}\end{array}\right.$在R上是减函数,则$\left\{\begin{array}{l}k<0\\ 10k+1≥\frac{1}{10}\end{array}\right.$,解得实数k的取值范围.
解答 解:若f(x)=$\left\{\begin{array}{l}{\frac{1}{x},x≥10}\\{kx+1,x<10}\end{array}\right.$在R上是减函数,
则$\left\{\begin{array}{l}k<0\\ 10k+1≥\frac{1}{10}\end{array}\right.$,
解得:k∈[$-\frac{9}{100}$,0)
点评 本题考查的知识点是分段函数的应用,正确理解分段函数的单调性是含义是解答的关键.
练习册系列答案
相关题目
19.log153-log62+log155-log63等于( )
A. | -2 | B. | 0 | C. | 1 | D. | 2 |
20.设函数f(x)=ax3+2bx-1,且f(-1)=3,则f(1)等于( )
A. | -3 | B. | 3 | C. | -5 | D. | 5 |