题目内容

已知点O为△ABC内一点,满足;
OA
+
OB
+
OC
=
0
|
OA
|=|
OB
|=|
OC
|=
3
,又
PC
=2
BP
,则
AP
AB
=
7.5
7.5
_
分析:可判三角形为等边三角形,由正弦定理可得向量夹角的正弦值,进而可得余弦值,由数量积的定义可得答案.
解答:解:∵|
OA
|=|
OB
|=|
OC
|=
3
,∴O为△ABC的重心,
OC
AB
=
OC
•(
OB
-
OA
)
=-(
OA
+
OB
)•(
OB
-
OA
)

=(
OA
+
OB
)•(
OA
-
OB
)
=
OA
2
-
OB
2
=0可得
OC
AB

同理可得
OA
BC
OB
AC
,即O为垂心,
故△ABC为等边三角形,且边长为3
PC
=2
BP
,故P为边BC的三等分点,
在直角三角形ADP中,易得AP=
AD2+PD2
=
(
3
3
2
)2+(
1
2
)2
=
7

进而可得sin∠APB=sin∠APD=
AD
AP
=
3
3
2
7

故在△ABP中,由正弦定理可得
BP
sin∠BAP
=
AB
sin∠APB

代入可得
1
sin∠BAP
=
3
3
3
2
7
,解得sin∠BAP=
3
2
7
,所以cos∠BAP=
5
2
7

AP
AB
=
7
×3×
5
2
7
=7.5
故答案为:7.5
点评:本题考查向量的数量积,涉及三角形形状的判断和正弦定理,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网