题目内容
已知点O为△ABC内一点,满足;
+
+
=
,|
|=|
|=|
|=
,又
=2
,则
•
=
OA |
OB |
OC |
0 |
OA |
OB |
OC |
3 |
PC |
BP |
AP |
AB |
7.5
7.5
_分析:可判三角形为等边三角形,由正弦定理可得向量夹角的正弦值,进而可得余弦值,由数量积的定义可得答案.
解答:解:∵|
|=|
|=|
|=
,∴O为△ABC的重心,
又
•
=
•(
-
)=-(
+
)•(
-
)
=(
+
)•(
-
)=
2-
2=0可得
⊥
,
同理可得
⊥
,
⊥
,即O为垂心,
故△ABC为等边三角形,且边长为3
又
=2
,故P为边BC的三等分点,
在直角三角形ADP中,易得AP=
=
=
,
进而可得sin∠APB=sin∠APD=
=
故在△ABP中,由正弦定理可得
=
,
代入可得
=
,解得sin∠BAP=
,所以cos∠BAP=
故
•
=
×3×
=7.5
故答案为:7.5
OA |
OB |
OC |
3 |
又
OC |
AB |
OC |
OB |
OA |
OA |
OB |
OB |
OA |
=(
OA |
OB |
OA |
OB |
OA |
OB |
OC |
AB |
同理可得
OA |
BC |
OB |
AC |
故△ABC为等边三角形,且边长为3
又
PC |
BP |
在直角三角形ADP中,易得AP=
AD2+PD2 |
(
|
7 |
进而可得sin∠APB=sin∠APD=
AD |
AP |
3
| ||
2
|
故在△ABP中,由正弦定理可得
BP |
sin∠BAP |
AB |
sin∠APB |
代入可得
1 |
sin∠BAP |
3 | ||||||
|
| ||
2
|
5 | ||
2
|
故
AP |
AB |
7 |
5 | ||
2
|
故答案为:7.5
点评:本题考查向量的数量积,涉及三角形形状的判断和正弦定理,属中档题.
练习册系列答案
相关题目