题目内容

【题目】已知函数y=f(x)(x∈R)d的导函数为f′(x),若f(x)﹣f(﹣x)=2x3 , 且当x≥0时,f′(x)>3x2 , 则不等式f(x)﹣f(x﹣1)>3x2﹣3x+1的解集是

【答案】( ,+∞)
【解析】解:令F(x)=f(x)﹣x3 , 则由f(x)﹣f(﹣x)=2x3 , 可得F(﹣x)=F(x),故F(x)为偶函数,
又当x≥0时,f′(x)>3x2即F′(x)>0,
所以F(x)在(0,+∞)上为增函数.
不等式f(x)﹣f(x﹣1)>3x2﹣3x+1化为F(x)>F(x﹣1),
所以有|x|>|x﹣1|,
解得x>
所以答案是( ,+∞).
【考点精析】本题主要考查了利用导数研究函数的单调性的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网