题目内容
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥CD,AD⊥CD,且AB=AD=PD=1,CD=2,E为PC的中点.
(1)求证:BE∥平面PAD;
(2)求二面角E-BD-C的余弦值.
(1)求证:BE∥平面PAD;
(2)求二面角E-BD-C的余弦值.
(1)详见解析;(2).
试题分析:(1)要想证明线面平行,由线面平行的判定定理可知:只需证明此直线与平面内的某一直线平行即可,考虑到E为PC的中点,所以取中点为,连接和AF;然后利用三角形的中位线的性质及空间中平行线的传递性可证BE//AF,再注意BE在平面PAD外,而AF在平面PAD内,从而可证BE∥平面PAD;(2)由已知可知直线DA、DC、DP两两互相垂直,所以我们可以为原点,所在直线为轴建立空间直角坐标系.从而由已知就可写出点P、C、A、B的坐标.进而因为E是PC的中点,求出E的坐标,然后就可写出平面BDE内不共线的两个向量的坐标,如,再设出平面BDE的一个法向量为,利用可求出平面BDE的一个法向量;而平面BDC的一个法向量显然为:,从而利用两法向量的夹角公式:就可求得所求二面角的余弦值.
试题解析:(1)证明:令中点为,连接, 1分
点分别是的中点,
,.
四边形为平行四边形. 2分
,平面,
平面 4分
(三个条件少写一个不得该步骤分)
5分
(2)以为原点,所在直线为轴建立空间直角坐标系(如图).
则.
因为E是PC的中点,所以E的坐标为 6分
设平面DBE的一个法向量为,而
则令则所以 9分
而平面DBC的一个法向量可为
故 12分
所以二面角E-BD-C的余弦值为。 13分
练习册系列答案
相关题目