题目内容

【题目】已知函数f(x)=x2-2aln x+(a-2)x,a∈R.

(1)当a=1时,求函数f(x)的图象在点(1,f(1))处的切线方程.

(2)是否存在实数a,对任意的x1,x2∈(0,+∞)且x1≠x2>a恒成立?若存在,求出a的取值范围;若不存在,说明理由.

【答案】见解析

【解析】(1)函数f(x)=x2-2aln x+(a-2)x,f′(x)=x-+(a-2)= (x>0).当a=1时,f′(x)=,f′(1)=-2,则所求的切线方程为y-f(1)=-2(x-1),即4x+2y-3=0.

(2)假设存在这样的实数a满足条件,不妨设0<x1<x2.

>a知f(x2)-ax2>f(x1)-ax1成立,

令g(x)=f(x)-ax=x2-2aln x-2x,则函数g(x)在(0,+∞)上单调递增,

则g′(x)=x--2≥0,即2a≤x2-2x=(x-1)2-1在(0,+∞)上恒成立,则a≤-.

故存在这样的实数a满足题意,其取值范围为.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网