题目内容
【题目】已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时,f(x)取得极值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值;
(3)证明:对任意x1、x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
【答案】(1)f(x)=x3-3x;(2)f(x)的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1).极大值为f(-1)=2;(3)证明见解析.
【解析】试题分析:(1)分析已知条件,函数为奇函数,即,可得,“当x=1时,f(x)取得极值-2”得,可解得;(2)由确定增区间,由得减区间,从而确定极值点;(3)要证题设命题,只要求出在上的最大值和最小值,证明最大值-最小值≤4即可,为此可由第(2)小题的结论很快求得.
试题解析:(1)∵f(x)是R上的奇函数,
∴f(-x)=-f(x),
即-ax3-cx+d=-ax3-cx-d,∴d=-d,
∴d=0(或由f(0)=0得d=0).
∴f(x)=ax3+cx,f ′(x)=3ax2+c,
又当x=1时,f(x)取得极值-2,
∴,即解得
∴f(x)=x3-3x.
(2)f ′(x)=3x2-3=3(x+1)(x-1),令f ′(x)=0,得x=±1,
当-1<x<1时,f ′(x)<0,函数f(x)单调递减;
当x<-1或x>1时,f ′(x)>0,函数f(x)单调递增;
∴函数f(x)的递增区间是(-∞,-1)和(1,+∞);递减区间为(-1,1).
因此,f(x)在x=-1处取得极大值,且极大值为f(-1)=2.
(3)由(2)知,函数f(x)在区间[-1,1]上单调递减,且f(x)在区间[-1,1]上的最大值为M=f(-1)=2.最小值为m=f(1)=-2.∴对任意x1、x2∈(-1,1),
|f(x1)-f(x2)|<M-m=4成立.
即对任意x1、x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立.
【题目】某种产品的广告费支出x(单位:百万元)与销售额y(单位:百万元)之间有如下的对应数据:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)画出散点图;
(2)求y关于x的线性回归方程。
(3)如果广告费支出为一千万元,预测销售额大约为多少百万元?
参考公式
用最小二乘法求线性回归方程系数公式:, .
【题目】某班主任对全班50名学生的学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:
积极参加班级工作 | 不太主动参加班级工作 | 合计 | |
学习积极性一般 | 6 | 19 | 25 |
合计 | 24 | 26 | 50 |
(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?
(2)判断是否有的把握认为学生的学习积极性与对待班级工作的态度有关系?
附: , n=a+b+c+d.
P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
k | 2.706 | 3.841 | 6.635 | 10.828 |
【题目】某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下表所示:
零件的个数x/个 | 2 | 3 | 4 | 5 |
加工的时间y/h | 2.5 | 3 | 4 | 4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间.