题目内容
8.求下列函数的定义域:(1)y=logx+1(16-4x)
(2)y=$\frac{\sqrt{{x}^{2}-4}}{lg{(x}^{2}+2x-3)}$;
(3)y=$\sqrt{1-lo{g}_{a}(x-a)}$.
分析 (1)由题意得$\left\{\begin{array}{l}{x+1>0}\\{x+1≠1}\\{16-{4}^{x}>0}\end{array}\right.$,从而求定义域;
(2)由题意得$\left\{\begin{array}{l}{{x}^{2}-4≥0}\\{{x}^{2}+2x-3>0}\\{{x}^{2}+2x-3≠1}\end{array}\right.$,从而求定义域;
(3)由题意得1-loga(x-a)≥0,从而讨论求定义域.
解答 解:(1)由题意得,
$\left\{\begin{array}{l}{x+1>0}\\{x+1≠1}\\{16-{4}^{x}>0}\end{array}\right.$,
解得,-1<x<2,且x≠0;
故函数y=logx+1(16-4x)的定义域为(-1,0)∪(0,2);
(2)由题意得,
$\left\{\begin{array}{l}{{x}^{2}-4≥0}\\{{x}^{2}+2x-3>0}\\{{x}^{2}+2x-3≠1}\end{array}\right.$,
解得,x<-1-$\sqrt{5}$或-1-$\sqrt{5}$<x<-3或x≥2;
故函数y=$\frac{\sqrt{{x}^{2}-4}}{lg{(x}^{2}+2x-3)}$的定义域为(-∞,-1-$\sqrt{5}$)∪(-1-$\sqrt{5}$,-3)∪[2,+∞);
(3)由题意得,1-loga(x-a)≥0,
loga(x-a)≤1,
①当0<a<1时,
x-a≥a,
解得,x≥2a;
故函数y=$\sqrt{1-lo{g}_{a}(x-a)}$的定义域为[2a,+∞);
②当a>1时,
0<x-a≤a,
∴a<x≤2a;
故函数y=$\sqrt{1-lo{g}_{a}(x-a)}$的定义域为(a,2a].
点评 本题考查了函数的定义域的求法及分类讨论的思想的应用.
A. | 5 | B. | 9 | C. | 7 | D. | 8 |