ÌâÄ¿ÄÚÈÝ
10£®ÒÑÖªº¯Êýf£¨x£©=2cos2¦Øx+sin£¨2¦Øx-$\frac{¦Ð}{6}$£©£¨¦Ø£¾0£©£®£¨1£©ÈôʵÊýx0£¬x0+$\frac{¦Ð}{2}$ÊǺ¯Êýy=f£¨x£©-1µÄÁ½¸öÏàÁÚÁãµã£¬Çó¦ØµÄÖµ£»
£¨2£©¡÷BACÖУ¬Èôf£¨$\frac{A}{4}$£©=2£¬¡ÏB£¾¡ÏC£¬BC=$\sqrt{21}$£¬S¡÷ABC=$\sqrt{3}$£¬OΪ¡÷ABCµÄÍâÐÄ£¬Çó$\overrightarrow{AO}$?$\overrightarrow{BC}$µÄÖµ£®£¨ÀûÓÃÒѾÇó³öµÄ¦ØµÄÖµ£¬£©
·ÖÎö £¨1£©ÀûÓúͽǹ«Ê½£¬ÒÔ¼°¶þ±¶½Ç¹«Ê½£¬»¯¼òº¯ÊýΪһ¸ö½ÇµÄÒ»¸öÈý½Çº¯ÊýµÄÐÎʽ£¬ÀûÓÃÖÜÆÚ¹«Ê½¿ÉµÃ¦ØµÄÖµ£»
£¨2£©½áºÏ£¨1£©Öк¯Êýf£¨x£©µÄ½âÎöʽ£¬Çó³öA½Ç£¬ÔÙÓÉ¡ÏB£¾¡ÏC£¬BC=$\sqrt{21}$£¬S¡÷ABC=$\sqrt{3}$£¬Çó³öb£¬c£¬ÔÙÓÉÍâÐĵÄÐÔÖʼ°ÏòÁ¿µÄÊýÁ¿»ýÔËË㣬µÃµ½´ð°¸£®
½â´ð ½â£º£¨1£©f£¨x£©=1+$\frac{\sqrt{3}}{2}$sin2¦Øx+$\frac{1}{2}$cos2¦Øx=1+sin£¨2¦Øx+$\frac{¦Ð}{6}$£©
¡ày=f£¨x£©-1=sin£¨2¦Øx+$\frac{¦Ð}{6}$£© ¡£¨4·Ö£©
¡ßʵÊýx0£¬x0+$\frac{¦Ð}{2}$ÊǺ¯Êýy=f£¨x£©-1µÄÁ½¸öÏàÁÚÁãµã£¬
¡ày=f£¨x£©-1µÄÖÜÆÚÊÇT=¦Ð
¡à¦Ø=1 ¡£¨6·Ö£©
£¨2£©ÓÉ£¨1£©Öªf£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+1£¬
¡ßf£¨$\frac{A}{4}$£©=2£¬¼´sin£¨$\frac{A}{2}$+$\frac{¦Ð}{6}$£©=1£¬
ÓÖÓÉAÊÇÈý½ÇÐεÄÄڽǣ¬¹Ê$\frac{A}{2}$+$\frac{¦Ð}{6}$=$\frac{¦Ð}{2}$£¬
¼´A=$\frac{2¦Ð}{3}$£¬
ÓÖ¡ßS¡÷ABC=$\frac{1}{2}bc•sinA$=$\sqrt{3}$£¬
¡àbc=4£¬
ÓÖ¡ßBC=$\sqrt{21}$£¬ÔòÓÉÓàÏÒ¶¨ÀíµÃ£º
21=b2+c2+bc£¬¼´b2+c2=17£¬
ÓÖ¡ß¡ÏB£¾¡ÏC£¬¼´b£¾c£¬
½âµÃ£ºb=4£¬c=1£¬
ÉèBCµÄÖеãΪD£¬Ôò$\overrightarrow{AO}$=$\overrightarrow{AD}$+$\overrightarrow{DO}$£¬
¡ßOΪ¡÷ABCµÄÍâÐÄ£¬
¡à$\overrightarrow{DO}$•$\overrightarrow{BC}$=0£¬
¡à$\overrightarrow{AO}$•$\overrightarrow{BC}$=£¨$\overrightarrow{AD}$+$\overrightarrow{DO}$£©=$\overrightarrow{AD}$•$\overrightarrow{BC}$=$\frac{1}{2}$£¨$\overrightarrow{AB}$+$\overrightarrow{AC}$£©•£¨$\overrightarrow{AC}$-$\overrightarrow{AB}$£©=$\frac{1}{2}$£¨$\overrightarrow{AC}$2-$\overrightarrow{AB}$2£©=$\frac{1}{2}$£¨b2-c2£©=$\frac{15}{2}$£®
µãÆÀ ±¾Ì⿼²éÈý½Çº¯ÊýµÄÖÜÆÚÐÔ¼°ÆäÇ󷨣¬ºÍ²î½Ç£¨¸¨Öú½Ç£©¹«Ê½£¬Èý½ÇÐÎÃæ»ý¹«Ê½£¬ÓàÏÒ¶¨Àí£¬ÏòÁ¿µÄÊýÁ¿»ý£¬ÊÇÖеµÌâ
£¨1£©×÷³öÉ¢µãͼ£¬²¢Çó³ö»Ø¹éÖ±Ïß·½³Ì£»
£¨2£©¸ù¾Ý£¨1£©ÖÐÇó³öµÄ»Ø¹éÖ±Ïß·½³Ì£¬Ô¤²âÉú²úA²úÆ·10£¨¶Ö£©Ê±ÏàÓ¦µÄÉú²úÄܺÄΪ¶àÉÙ£¨¶Ö£©£¿
X | 1 | 2 | 3 | 4 |
y | 1 | 3 | 5 | 6 |
Sn2=$\frac{1}{n}$[£¨x1-$\overline{x}$£©2+£¨x2-$\overline{x}$£©2+¡+£¨xn-$\overline{x}$£©2]
¹«Ê½×é¢ò.$\widehat{y}$=$\widehat{b}$x+$\widehat{a}•\widehat{b}$=$\frac{\sum_{i+1}^{n}{x}_{1}{y}_{1}-n\overline{x}\overline{y}}{\sum_{i+1}^{n}{x}_{1}^{2}-n{\overline{x}}^{2}}$£©