题目内容

【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期为π,且其图象向左平移 个单位后得到函数g(x)=cosωx的图象,则函数f(x)的图象(
A.关于直线x= 对称
B.关于直线x= 对称
C.关于点( ,0)对称
D.关于点( ,0)对称

【答案】C
【解析】解:∵函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期为π,∴ =π,∴ω=2.

把其图象向左平移 个单位后得到函数g(x)=cosωx=sin(2x+ +φ)的图象,

+φ=kπ+ ,k∈Z,∴φ=﹣ ,∴f(x)=sin(2x﹣ ).

由于当x= 时,函数f(x)=0,故A不满足条件,而C满足条件;

令x= ,求得函数f(x)=sin = ,故B、D不满足条件,

故选:C.

【考点精析】解答此题的关键在于理解函数y=Asin(ωx+φ)的图象变换的相关知识,掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网