题目内容
18.已知在60°二面角M-α-N内有一点P,P到平面M、平面N的距离均为2,求点P到直线a的距离.分析 设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ,根据二面角平面角的定义可知∠AQB是二面角M-a-N的平面角,连PQ,则PQ是P到a的距离,PQ是四边形PAQB的外接圆的直径2R,在△PAB中由余弦定理得 求出AB,最后根据正弦定理可求出PQ,从而求出点P到直线a的距离.
解答
解:设PA、PB分别为点P到平面M、N的距离,过PA、PB作平面α,分别交M、N于AQ、BQ.
PA⊥平面M,a?平面M,则PA⊥a,同理,有PB⊥a,
∵PA∩PB=P,∴a⊥面PAQB于Q
又AQ、BQ?平面PAQB,∴AQ⊥a,BQ⊥a.
∴∠AQB是二面角M-a-N的平面角,
∴∠AQB=60°
连PQ,则PQ是P到a的距离,在平面图形PAQB中,有∠PAQ=∠PBQ=90°
∴P、A、Q、B四点共圆,且PQ是四边形PAQB的外接圆的直径2R
在△PAB中,∵PA=2,PB=2,∠BPA=180°-60°=120°,
由余弦定理得 AB2=4+4-2×2×2cos120°=12
由正弦定理:PQ=$\frac{2\sqrt{3}}{\frac{\sqrt{3}}{2}}$=4
∴点P到直线a的距离为4.
点评 本题中,通过作二面角的棱的垂面,找到二面角的平面角,属于中档题.
练习册系列答案
相关题目
10.正四棱锥P-ABCD的高为$\sqrt{3}$,侧棱长为$\sqrt{7}$,则它的斜高为( )
| A. | 2 | B. | 4 | C. | $\sqrt{5}$ | D. | 2$\sqrt{2}$ |