题目内容
【题目】某市需对某环城快速车道进行限速,为了调研该道路车速情况,于某个时段随机对辆车的速度进行取样,测量的车速制成如下条形图:
经计算:样本的平均值,标准差,以频率值作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于是需矫正速度.
(1)从该快速车道上所有车辆中任取个,求该车辆是需矫正速度的概率;
(2)从样本中任取个车辆,求这个车辆均是需矫正速度的概率;
(3)从该快速车道上所有车辆中任取个,记其中是需矫正速度的个数为,求的分布列和数学期望.
【答案】(1) ;(2 ) ;(3)见解析.
【解析】试题分析:(1)记事件为“从该快速车道上所有车辆中任取个,该车辆是需矫正速度”,根据给出的条形图,即可求解事件的概率;
(2)记事件为“从样本中任取个车辆,这个车辆均是需矫正速度”根据题设,利用古典概型及其概率的计算公式,即可求解事件概率;
(3)由题意得,需矫正速度的个数服从二项分布,即可求解对应的概率,列出分布列,计算数学期望。
试题解析:(1)记事件为“从该快速车道上所有车辆中任取个,该车辆是需矫正速度”,
因为,
由样本条形图可知,所求的概率为
.
(2)记事件为“从样本中任取个车辆,这个车辆均是需矫正速度”
由题设可知样本容量为,又需矫正速度个数为个,故所求概率为.
(3)需矫正速度的个数服从二项分布,即,
∴, ,
,
因此的分布列为
由,知数学期望.
【题目】现在颈椎病患者越来越多,甚至大学生也出现了颈椎病,年轻人患颈椎病多与工作、生活方式有关,某调查机构为了了解大学生患有颈椎病是否与长期过度使用电子产品有关,在遂宁市中心医院随机的对入院的50名大学生进行了问卷调查,得到了如下的4×4列联表:
未过度使用 | 过度使用 | 合计 | |
未患颈椎病 | 15 | 5 | 20 |
患颈椎病 | 10 | 20 | 30 |
合计 | 25 | 25 | 50 |
(1)是否有99.5%的把握认为大学生患颈锥病与长期过度使用电子产品有关?
(2)已知在患有颈锥病的10名未过度使用电子产品的大学生中,有3名大学生又患有肠胃炎,现在从上述的10名大学生中,抽取3名大学生进行其他方面的排查,记选出患肠胃炎的学生人数为,求的分布列及数学期望.
参考数据与公式:
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
【题目】某地区2008年至2014年中,每年的居民人均纯收入y(单位:千元)的数据如下表:
年 份 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 |
年份代号t | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
人均纯收入y | 2.7 | 3.6 | 3.3 | 4.6 | 5.4 | 5.7 | 6.2 |
对变量t与y进行相关性检验,得知t与y之间具有线性相关关系.
(1)求y关于t的线性回归方程;
(2)预测该地区2017年的居民人均纯收入.
附:回归直线的斜率和截距的最小二乘估计公式分别为:
,