题目内容
己知三个不等式:① ② ③
(1)若同时满足①、②的值也满足③,求m的取值范围;
(2)若满足的③值至少满足①和②中的一个,求m的取值范围。
(1)若同时满足①、②的值也满足③,求m的取值范围;
(2)若满足的③值至少满足①和②中的一个,求m的取值范围。
(1)
(2)
本例主要综合复习整式、分式不等式和含绝对值不等的解法,以及数形结合思想,解本题的关键弄清同时满足①、②的值的满足③的充要条件是:③对应的方程的两根分别在和内。不等式和与之对应的方程及函数图象有着密不可分的内在联系,在解决问题的过程中,要适时地联系它们之间的内在关系。
解:记①的解集为A,②的解集为B,③的解集为C。
解①得A=(-1,3);解②得B=
(1) 因同时满足①、②的值也满足③,ABC
设,由的图象可知:方程的小根小于0,大根大于或等于3时,即可满足
(2) 因满足③的值至少满足①和②中的一个,因
此小根大于或等于-1,大根小于或等于4,因而
说明:同时满足①②的x值满足③的充要条件是:③对应的方程2x+mx-1=0的两根分别在(-∞,0)和[3,+∞)内,因此有f(0)<0且f(3)≤0,否则不能对A∩B中的所有x值满足条件.不等式和与之对应的方程及图象是有着密不可分的内在联系的,在解决问题的过程中,要适时地联系它们之间的内在关系.
练习册系列答案
相关题目