题目内容
已知命题:,命题:若为假命题,则实数的取值范围为( )
A. | B.或 | C. | D. |
D
解析试题分析::,:,若,则,均为假命题,∴.
考点:简单的逻辑联结词.
练习册系列答案
相关题目
某个命题与正整数有关,若当时该命题成立,那么可推得当时该命题也成立,现已知当时该命题不成立,那么可推得( )
A.当时,该命题不成立 | B.当时,该命题成立 |
C.当时,该命题成立 | D.当时,该命题不成立 |
设是等比数列,则“”是“数列是递增数列”的( ).
A.充分而不必要条件 | B.必要而不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
设为非零实数,则:是:成立的 ( )
A.充分不必要条件 | B.必要不充分条件 |
C.充分必要条件 | D.既不充分也不必要条件 |
设,则“”是“”的( )
A.充分而不必要条件 | B.必要而不充分条件 |
C.充要条件 | D.既不充分也不必要条件 |
“=1”是“函数f(x)=在区间上为增函数”的 ( )
A.必要不充分条件 | B.充分不必要条件 |
C.充要条件 | D.既非充分又非必要条件 |
若“0<x<1”是“(x-a)[x-(a+2)]≤0”的充分不必要条件,则实数a的取值范围是( )
A.(-∞,0]∪[1,+∞) | B.(-1,0) |
C.[-1,0] | D.(-∞,-1)∪(0,+∞) |
命题“,”的否定是( )
A., | B., |
C., | D., |
下列命题正确的是( )
A.存在x0∈R,使得的否定是:不存在x0∈R,使得; |
B.存在x0∈R,使得的否定是:任意x∈R,均有 |
C.若x=3,则x2-2x-3=0的否命题是:若x≠3,则x2-2x-3≠0. |
D.若为假命题,则命题p与q必一真一假 |